in the GIANT EXPRESS fragmentary order. The Joint Chiefs of Staff approved this type of exercise in the early summer of 1980, and a crew TDY to Detachment 1, 9th SRW flew an SR-71 to Diego Garcia on 1 July 1980. The SR-71, without intelligence-collecting gear, flew south from Kadena over the South China Sea. It needed less than two minutes to overfly the Malaysian Peninsula and to proceed in a southwesternly direction over the Indian Ocean to Diego Garcia. This mission lasted 4 hours, 24 minutes and required three mid-air refuelings, two of them made by KC-135Qs operating from Kadena. Three "Q" model tankers launched from Diego Garcia to perform the third mid-air refueling, having been deployed to Diego Garcia from Kadena approximately one week before the training exercise. Plans originally called for the SR-71 to return to Okinawa on 2 July, the day after its arrival on Diego Garcia. But a ground abort delayed the return flight until 4 July 1980. The redeployment mission, flown over a track slightly modified from the deployment route, lasted 4 hours, 45 minutes and once again required three mid-air refuelings. Three KC-135Qs staging from Diego Garcia performed the first one, while tankers flying out of Kadena made the second and third mid-air refuelings.

GIANT REACH

(124) Next to the Western Pacific, Europe was the second area of greatest SR-71 operational activity during the three-year period. From RAF Mildenhall, United Kingdom, the SR-71 collected imagery and ELINT. SAC performed this operation, nicknamed GIANT REACH, according to the guidelines contained in a fragmentary order of the same name. Unlike at Kadena AB, Japan, where SAC continually kept
three SR-71s, there was no permanent SR-71 operation in Europe. Rather, two or three times annually at JCS direction, Headquarters SAC sent one SR-71 to RAF Mildenhall on short duration deployments that usually lasted for no more than three weeks each. Twice in 1978 and three times in 1979 and in 1980, an SR-71 deployed to RAF Mildenhall. From this base near Cambridge, the supersonic aircraft performed round robin ELINT and imagery-collecting missions.

On six of the eight GIANT REACH deployments which occurred during the 36-month period, the SR-71, along with other national and theater reconnaissance assets, monitored the Soviet Union/Warsaw Pact spring and autumn troop rotations. The Strategic Reconnaissance Center normally scheduled each GIANT REACH deployment and redeployment sortie as a PARPRO mission.

On most of the GIANT REACH deployments, Headquarters SAC activated the portions of the Mildenhall-based Mobile Processing Center (MPC II) needed to program the SR-71's several computer-driven subsystems, to process the high resolution radar collections, and to make a preliminary readout of the ELINT collection, with a more detailed ELINT analysis taking place back at Beale's Central Processing Facility and at the 544th Strategic Intelligence Wing, Offutt AFB, Nebraska. RADINT and ELINT were the objectives on nearly all of the SR-71's European sorties. Photographic collection, extremely limited due to the poor visibility common to the European collection area, was forwarded to the 497th Reconnaissance Technical Group at Shierstein, West Germany for processing.

Six of the eight GIANT REACH deployments made during the three-year period monitored the spring and autumn Warsaw Pact troop rotations.
National Intelligence users believed it probable in December 1980, that Warsaw Pact forces would invade Poland to help Poland's Communist government intimidate the nationwide, independent trade union SLD, which had been formed in August 1980. On 8 December, the Soviet Union, East Germany, and Czechoslovakia called up military reservists and troops to invade Poland. Under the pretense of conducting military maneuvers, the Warsaw Pact would cause eating near Warsaw Pact troops to invade Poland at the beginning of 1981. In late 1979, Soviet troops had invaded Afghanistan under the guise of restoring political stability.

In 1980, the Soviet Union had sent Red Army tanks into Czechoslovakia and, in late 1979, Soviet troops had invaded Afghanistan, moreover, were still fighting Afghan guerrillas at the end of 1980.

And in December 1980, anticipating possible Warsaw Pact intervention into strike-torn Poland, the JCS instructed SAC to deploy SR-71 to RAF Mildenhall to fly what turned out to be a single photo mission.

Special SR-71 deployment occurred in March 1979, when the JCS directed SAC to send the supersonic aircraft to RAF Mildenhall.
A GIANT REACH mission flown as briefed on
30 April 1980 is representative of the 28 other such missions that
the SR-71 flew during the 36-month period, round-robin from RAF
Mildenhall.

The mission lasted for 2 hours, 40 minutes,
and KC-135Qs operating from RAF Mildenhall refueled the SR-71 twice
over the North Sea before and after the supersonic aircraft
entered and departed.

National intelligence users
gave increased attention in the late years of the 1970s to the
SR-71's high resolution radar as an intelligence-collecting system
in Europe as well as in the Western Pacific. Stimulating this
interest were the sensor's unique performance characteristics,
notably its ability to collect useable imagery.
Of great interest, especially to the Chief of Naval Operations, was the Kola Peninsula. Bordered by Finland to the west, the Kola Peninsula extended in a southeastern direction into the Barents Sea. The Soviet Union's Northern Fleet, the largest of its three fleets and its most powerful strike force, was headquartered at Severomorsk on the periphery of the peninsula's Kola Gulf. Approximately 100 nuclear submarines were assigned to the Northern Fleet, accounting for two thirds of all the Soviet Union's nuclear subs. The majority of these submarines were based in the Kola Gulf area. The warm Gulf Stream kept the Kola Gulf naval facilities ice-free the year-round, enabling the submarines to move at anytime of year from their berths into the Barents Sea and the Norwegian Sea from which the subs could launch their 4,800-mile-range SLBMs to targets in the United States. In May 1978, Admiral James L. Holloway III, Chief of Naval Operations, asked the Defense Intelligence Agency to validate a requirement to have the SR-71 fly in the Barents Sea area for most of the year, rain, fog, persistent cloud cover, and Arctic winter darkness precluded the collection of useable photography. And even on bright days, the sun angle in the Barents Sea area was often too low for the collection of high-resolution photography.

Given other SR-71 commitments, SAC did not have enough SR-71s in 1978 to fly. But DIA's validation of the CNO requirement would be
the first step toward obtaining additional SR-71s and possibly even securing British approval for a permanent SR-71 operation at RAF Mildenhall. An SR-71 beddown in the United Kingdom was really necessary if SAC were to support the level of European RADINT tasking that Admiral Holloway was seeking. DIA validated the Navy's requirement for the seven monthly missions but recommended that the SR-71 fly several evaluation sorties.

(ω) (OFFFORM) The SR-71 sent to RAF Mildenhall in October-November 1978 to cover the autumn troop rotations. The Kadena-based SR-71s collected RADINT to help produce the best possible imagery, the Strategic Reconnaissance Center used tracks that optimized the high resolution radar's aspect angle with the preprogrammed targets.

(ω) (OFFFORM) RADINT interpreters assigned to the 9th Reconnaissance Technical Squadron at Beale and the 544th Aerospace Reconnaissance Technical Wing at Offutt AFB analyzed the imagery collected on these missions.
page 136 corresponding picture to description written below is denied

\(\text{(c)} \) In the spring of 1979, the Strategic Reconnaissance Center prepared this track (-track X-048) which enabled the SR-71.
Once SAC and Navy intelligence specialists had completed their study of the imagery, a conference convened at Headquarters SAC in mid-November 1978, to assess the evaluation and to recommend a pattern for future SR-71 RADINT operations. A Defense Intelligence Agency representative chaired this meeting whose principal participants represented SAC, the Navy, Headquarters USAF, Headquarters European Command, and the Navy's Atlantic Command. The attendees unanimously agreed that the SR-71's high resolution radar was the ideal reconnaissance system for monitoring. But the Navy spokesmen hastened to add that a precise number of monthly RADINT sorties could not be specified under present circumstances. For starters, SAC had only eight SR-71As authorized, and these aircraft were already committed to other requirements: Western Pacific operations, the Single Integrated Operational Plan,
contingencies, the Strategic Projection Force, two or three annual deployments to RAF Mildenhall, and of course training operations at Beale. Secondly, certain variables, difficult to anticipate, determined data that the Navy required at any given time. These variables included the weather, the degree of political tensions, and the extent of worldwide Soviet activity that collateral intelligence sources provided. Nevertheless, the Navy representatives readily endorsed the requirement for frequent SR-71 RADINT surveillance.

(ย) (ง) To achieve these objectives, beginning in the spring of 1979 Headquarters SAC scheduled the SR-71 to collect RADINT in the Barents Sea on two to four of the missions that were flown during each GIANT REACH deployment. To further satisfy the Navy's requirement for Barents Sea imagery, SAC performed three SR-71 RADINT/ELINT sorties round-robin from Beale to the Barents Sea (once in 1979 and twice in 1980), the first such missions ever flown. And in the spring of 1979, the Strategic Reconnaissance Center developed a new track that enabled the SR-71 to collect RADINT/ELINT on the same mission. Besides providing more frequent HRR coverage, the new track was in keeping with the SRC's practice of making maximum use of limited SR-71 resources. When the SR-71 flew this track round-robin from RAF Mildenhall, the sortie lasted for approximately seven hours, if flown as briefed, and required four mid-air refuelings. 146
(U) 43) Because of the high resolution radar's proven effectiveness, the JCS instructed SAC to deploy an SR-71 to RAF Mildenhall on 12 December 1980 for the SR-71's third European deployment of 1980. The JCS directed this deployment in response to a Commander in Chief, Atlantic request that the SR-71 monitor 49 The Navy.

* 49 Flown according to the GIANT REACH fragmentary order that outlined the procedures for SR-71 contingency operations in Europe and/or the Middle East, either from Mildenhall or round-robin from the CONUS.
On 13 July 1979, an SR-71 flew a round robin sortie from Beale AFB to the Barents Sea in support of a SAC worldwide nuclear readiness exercise GLOBAL SHIELD '79. In the course of the 10 hour, 4 minute mission, the SR-71's high resolution radar collected...
wanted this coverage because it believed it likely that Russian military forces would occupy strike-ridden Poland to help Poland's Communist government put down a popular and well-organized trade union movement. The Mildenhall-based Mobile Processing Center was activated to support this GIANT REACH deployment.

On the 12 December 1980 Beale-to-Mildenhall deployment sortie, the SR-71 collected RADINT and ELINT of the aircraft completed six Mildenhall round robin missions before the end of 1980. Twice the SR-71 collected ELINT and HRR imagery in the of the four remaining sorties, the aircraft collected RADINT and ELINT, three times by operating only during this third GIANT REACH deployment of 1980.

The national intelligence community used these collections, along with the collections provided by other national reconnaissance systems, to assess the Soviet Union's intentions toward Poland.

GIANT REACH Special Mission: 21 March 1979

All but one of the operational reconnaissance missions flown by the Mildenhall-based SR-71 during the three-year period monitored Soviet/Warsaw Pact military force status. On
a single GIANT REACH sortie, the SR-71 operated in the airspace of four countries never before overflown by SAC reconnaissance aircraft.

Besides the intelligence derived from the overflight, General Ellis called the mission a significant contribution to projecting an American military presence in the Indian Ocean and Middle East areas.

Situated at the tip of the Arabian Peninsula at the southern approach to the Red Sea, North Yemen and South Yemen bordered oil-rich Saudi Arabia. An Arab nation friendly to the United States, Saudi Arabia was the largest foreign supplier of oil to the U.S. and, for several years, it had been a moderating influence within the OPEC oil cartel. Throughout the 1970s South Yemen had received military aid from the USSR and China. And it had repeatedly tried to undermine the moderate government of North Yemen, even going so far as to send assassins to murder prominent North Yemeni political figures. Saudi Arabia had close ties with North Yemen but not with the left wing government of South Yemen. Enmity between the two Yemens came to a head on 24 February 1979, when South Yemen invaded North Yemen. The Saudi government, already menaced by internal subversive elements, faced a new dilemma: a united Yemen under a Marxist government would further threaten its own political stability. According to the Defense Intelligence Agency, the Saudi royal family was much troubled by the fact that South Yemen had invaded North Yemen even

* (U) Yemen Arab Republic (North Yemen) and the People's Democratic Republic of Yemen (South Yemen).

** (U) Organization of Petroleum Exporting Countries.
as the South Yemen foreign minister was in Riyadh, Saudi Arabia's capital city, pledging that his government would support Arab League arbitration of the problems that existed between North Yemen and South Yemen.

(145) Capitalizing upon the SR-71's ability to respond on short notice, the JCS directed Headquarters SAC to deploy an SR-71 to RAF Mildenhall on 12 March 1979. This special deployment took place approximately one month before the supersonic aircraft was scheduled to arrive in England to cover the spring 1979 Warsaw Pact troop rotations.

(156) Since 1976 the SR-71 had flown operational missions from England, but before March 1979 the aircraft had covered only Soviet and Warsaw Pact military objectives. The GIANT REACH fragmentary order, however, contained the guidance that would be followed in the event the JCS directed the SR-71 to collect intelligence in the Middle East by flying round robin from RAF Mildenhall.

(159) they actually directed that only one such sortie be flown. SAC launched this single, GIANT REACH special mission against the
backdrop of fluid diplomatic events. As a result of persistent
discussions between Arab League representatives from Syria, Iraq,
and Jordan and officials from North Yemen and South Yemen, the
two warring nations agreed on 2 March 1979 to a cease-fire that took
effect on the next day. And on 16 March 1979, North Yemen and
South Yemen further agreed to begin withdrawing their forces from
each other's territory and to complete the withdrawal by 23 March
1979. An Arab League supervisory committee was responsible for
overseeing the withdrawals. But the Arab League's oversight
proved easier to pledge than to bring off, since the supervisory
committee had only a few jeeps for its 80 members to use in
patrolling both sides of the rugged 350-mile border which separated
North Yemen from South Yemen.

As with other SR-71 missions on

With clouds covering approximately 45 percent of
the target area, photo interpreters judged the quality of the
photography "fair." They observed no military activity at any
of the 24 primary targets. Clouds masked Aden as the SR-71 over-
flew it, and as a result, no targets could be identified in and
around the city. Photography from the 21 March 1979 mission enabled
the National Photographic Interpretation Center in Washington, D.C. to conclude that South Yemen had indeed pulled all of its forces out of the Qatabah and Harib regions. Strategic Reconnaissance Center planners had designed the mission track so that the SR-71 would

As was the case whenever the SR-71 operated in a new world area, the U.S. State Department needed time (on this occasion only a few days) to obtain the appropriate diplomatic clearances from the friendly nations to be overflown. Italy, a NATO ally, allowed the SR-71 to be refueled over Sicily.

And the Egyptian government of Anwar Sadat, which in 1979 was working closely with President Jimmy Carter to achieve a lasting peace in the Middle East,

Photo interpreters used this photography to identify a
pages 150-153 denied

two pictures with
corresponding descriptions
recently arrived shipment of Soviet military equipment at Aseb and counted approximately 25 medium tanks and nine field artillery guns on the dock. The shipment constituted yet another increment of the USSR's continuing supply of arms to Ethiopia. 171

(1) (2) The 21 March 1979 mission, which covered more than 8,000 miles, required six mid-air refuelings. The SR-71's specially equipped KC-135Q tankers refueled the reconnaissance aircraft twice, in each of three refueling areas. 172

operating from RAF Mildenhall refueled the SR-71 shortly after takeoff over the Atlantic Ocean off England's southwestern coast. Tankers assigned to Detachment 2, 306th Strategic Wing at Zaragoza AB, Spain, performed the second refueling over Sicily, while "A" model tankers TDY from RAF Mildenhall to Cairo International Airport refueled the SR-71 from the same operating locations repeated these refueling procedures on the same refueling tracks during the SR-71's homeward journey to the United Kingdom. 172
Proposal for a Permanent SR-71 Operation at RAF Mildenhall, United Kingdom

(4) The reconnaissance specialists, who attended the Headquarters SAC conference to evaluate having the SR-71's

considered a permanent SR-71 operation in the United Kingdom the best way to

Throughout the three-year period, national intelligence users' growing dependence upon RADINT and the documented success of the SR-71's high resolution radar in monitoring stimulated interest in raising the command's SR-71 PAA and in keeping one of the supersonic aircraft permanently at RAF Mildenhall. Achieving a permanent SR-71 operation in the United Kingdom would be no easy matter. On the one hand, there were several SR-71s in storage. RAF Mildenhall, moreover, was one of the several worldwide storage areas for the supersonic aircraft's special JP-7 fuel. On the other hand, a big problem inherent in any attempt to increase the SR-71 PAA was the aircraft's high operating cost. This meant that Congress would weigh carefully the operational expense against the probable intelligence gain before assigning the Strategic Air Command any more SR-71s and before funding a permanent SR-71 operation in Europe. Keep in mind, also, that while the British government permitted the SR-71 to make two or three short annual deployments to RAF Mildenhall, permanently maintaining one of the aircraft there was likely to become a politically sensitive issue in the United Kingdom.

(4) Be that as it may, having an SR-71 based in the United Kingdom the year-round was an attractive option. It would obviously make the aircraft's

a Mildenhall-based SR-71 be able to

Not only would the aircraft could also react quickly to crisis situations

UNCLASSIFIED

SECRET
In Europe, the Middle East, and Africa. And a permanent operation in the United Kingdom would enable the SR-71 to respond

[Diagram]

178

(U) (G) At about the same time as the Headquarters SAC intelligence conference was discussing the value of having the SR-71 [Diagram] Supreme Headquarters Allied Forces in Europe (SHAPE) expressed its interest in a permanent SR-71 operation at RAF Mildenhall. SHAPE viewed an SR-71 beddown in the United Kingdom as a good way to overcome many of the reconnaissance deficiencies then existing in Europe and which would remain until the TR-1 became fully operational in the late 1980s. Having the SR-71 collect high resolution radar imagery on a weekly basis would further acquaint European commanders with this unique type of intelligence preparatory to the ASARS I and the ASARS II high resolution radar systems* becoming operational. Additionally, a permanent SR-71 operation would be a good way to build up an extensive European HRR data base and to hone the skills of RADINT interpreters in the few years that remained before the ASARS I and the ASARS II began collecting large quantities of imagery on a near-daily basis. And since the SR-71 was deemed invulnerable to virtually all known threats,**

[Diagram]

* (U) High resolution radars in contractor development for the SR-71 and for the TR-1 respectively. See "TR-1 Reconnaissance Aircraft," this history.

** (G)
(U) It was against this background that in 1979 and in 1980 plans slowly evolved for permanently basing one SR-71 at RAF Milden-
hall. Throughout the 36-month period, General Ellis personally and
consistently stressed the importance of his command's reconnaissance
mission to national civilian and military leaders. In late 1979, he
believed that the existing PAA's of SR-71s, U-2Rs, and RC-135s were
the minimum number of aircraft needed for satisfying all of SAC's
peacetime, contingency, and IOP reconnaissance requirements.
What concerned General Ellis was that despite the increased tasking
being levied upon these aircraft, the Office of Management and
Budget and some Congressional staff members were pressing for reduc-
ing these PAA's below the level needed to satisfy validated require-
ments. In pressing SAC's case for additional SR-71s and U-2Rs and
for fitting all 14 of the command's RC-135H/V aircraft with modern-
ized SIGINT-collecting equipment, General Ellis told Chairman of
the Joint Chiefs of Staff, General David C. Jones, that he needed
one SR-71A over and above the eight such aircraft then authorized.
Another SR-71 was required to carry out properly all of the SR-71's
FARPRO, SIOP, and expanding contingency commitments. 180

(U) Like General Ellis, Air Force Chief of Staff General Lew
Allen, Jr. wanted to raise the SR-71 PAA and to create a permanent
SR-71 operation at RAF Mildenhall. In mid-November 1979 he confided
to General Ellis that he had "an initiative under way" to increase
SAC's SR-71 authorization from eight to 10 aircraft and to maintain
two SR-71s at RAF Mildenhall. But given the emphasis that Congress
and the Carter administration placed upon trimming defense spending,
General Allen's initiative lay dormant until late 1980. 181

(U) A firmer action came when Headquarters USAF notified Head-
quarters SAC on 29 September 1980 that the DOD-approved Air Force
FY 82-86 Program Objective Memorandum (POM) contained (at the mini-
mum level) the proposal for an SR-71 beddown at RAF Mildenhall.
Headquarters USAF put its case for a permanent SR-71 operation in
the United Kingdom in these words: 182
Previous temporary deployments have demonstrated the SR-71 capability to effectively monitor Soviet, Warsaw Pact, and Mid-East activity; forward basing will improve overall readiness, the timeliness of sensor products, responsiveness to theater and crisis situations and effectively integrate the SR-71, with its unique capabilities, into the European theater.

(U) The Air Force plan, as outlined in the FY 82-86 Program Objective Memorandum, called for removing one SR-71 from storage and assigning it to RAF Mildenhall where it would fly approximately eight monthly PARPRO missions. To enable the SR-71 to operate from the United Kingdom as a complete weapon system, the Mobile Processing Center already at RAF Mildenhall would be permanently activated. While Headquarters USAF proposed that a 51-man civilian contractor maintenance cadre support the SR-71 in England, it also planned to raise military manpower at the 9th SRW by nine officers and 50 airmen. In addition, the SR-71 crew force would have to be increased from 11 to 12 crews* to support a ninth aircraft. Of course actually assigning another SR-71 to the Strategic Air Command depended upon Congress recognizing the need and then providing the money that it took to consummate the action. But in late 1980, in anticipation that a permanent SR-71 operation at RAF Mildenhall would soon be forthcoming, Headquarters USAF convened a three-day preliminary planning conference which SAC and Headquarters USAF reconnaissance force managers attended. The conference objective was to develop a concept of operations for a permanent SR-71 operation at RAF Mildenhall and to identify all the other actions that would be required to meet an FY 82 initial operational capability (IOC) date.

* (U) An SR-71 crew consisted of a pilot and a reconnaissance systems officer (RSO).
CHAPTER IV

U-2 RECONNAISSANCE OPERATIONS

OLYMPIC GAME

(U) (S) Like the SR-71, the U-2R flew the majority of its reconnaissance missions in the Korean area. During the three-year period, SAC kept two U-2Rs at Detachment 2, 9th SRW at Osan AB, South Korea.

(U) (S) Nicknames OLYMPIC GAME and conducted according to the guidelines contained in a fragmentary order of the same name, Detachment 2, 9th SRW performed 60 percent of all the operational sorties flown by the U-2R in 1978, 1979, and 1980. In mid-1980, nine officers and 67 airmen, assigned to Detachment 2 in PCS status, along with 10 civilian contractors, supported the OLYMPIC GAME mission.

(U) (S) At the beginning of the three-year period, the JCS required SAC to fly 24 OLYMPIC GAME missions every month but, commencing in September 1978, they raised the sortie rate to 30 monthly missions. This level of tasking remained in effect through the end of 1980. Detachment 2 met the increased requirement with the authorization of just one additional airman maintenance specialist. It was a considerable achievement,
therefore, that the detachment consistently flew the 30 monthly WESTPAC missions without having to ask the 9th SRW for TDY manning assistance. According to the 9th SRW Deputy Chief of Staff for Maintenance, Detachment 2 maintained "outstanding morale" in spite of the fact that its people were having to work a seven-day week.† To support the 30 monthly sorties, Headquarters SAC and the 9th SRW wanted a third U-2R deployed to Osan. But, with only nine "R" models authorized, with two Middle East U-2 programs in progress, with a new U-2 mission programmed to begin in Europe in early 1979,* and owing to heavy training requirements at Beale, Detachment 2 made do with just two aircraft, the same number of U-2Rs kept at Osan since the OLYMPIC GAME operation began there in March 1976.

In the three years 1978-1980, the Osan-based U-2R flew a total of 1,050 operational missions, all of them over a single track (G-008).† In February 1977, responding to a request of Commander, United States Forces Korea, the JCS had directed SAC to collect oblique photography on four of the U-2R's monthly COMINT missions. Throughout the three-year period, the Strategic Reconnaissance Center again scheduled an average of four monthly photo missions and usually had them flown in conjunction with the COMINT collection. On these COMINT/PHOTINT sorties, the U-2R's "H" model pointing camera, \[\text{was the camera carried.} \]

Unlike the SR-71's cameras, which were computer controlled and synchronized with the aircraft's flight path to photograph pre-programmed targets, the U-2 pilot operated the "H" model camera at appropriate points along the mission track.‡

To avoid the likelihood of the North Koreans alleging provocation, the JCS approved modifications to the

* (U) See "OLYMPIC TORCH," this history.
SECRET

UNCLASSIFIED

U-2R's single-track infrequently, and then only to satisfy some new requirement. But to expedite the collection of oblique photography, in the summer of 1977 the Strategic Reconnaissance Center prepared and the JCS approved a new track (G-008) which, at selected points, brought the U-2R in from 26 nautical miles to 10 NM's of the DMZ. The U-2R flew this single track throughout 1978, 1979, and 1980, and it enabled the "H" model camera

As in previous years, the SRC tried to schedule each Korean photo mission when the weather forecast called for a minimum of 65 percent cloud free weather along the DMZ with light to moderate haze. Such ideal weather, however, was seldom present over the entire track. Rainy, cloudy weather was standard fare on the Korean peninsula for most of the year. Remember, it was this circumstance which made the SR-71's high resolution radar such a valuable reconnaissance asset in this area.

The Strategic Reconnaissance Center, moreover, usually scheduled the OLYMPIC GAME missions to coincide with standard eight-to-five workday. A U-2R when flown as briefed, lasted for between eight and nine hours, during which time the aircraft made seven passes over the track. With a maximum range

SENIOR SPEAR downlinked its collection to a mobile van where Electronic Security Command operators assigned to the 6903d Security Squadron at Osan monitored the collection and tuned the receivers throughout the mission. When the U-2R collected COMINT
The real standard of U-2 operational effectiveness in any area over a given period of time was the percentage of orbit time collected measured against the total hours of collection time tasked. It was, therefore, a notable affirmation of both the U-2R's reliability and the competence of Detachment 2 maintenance personnel that for the entire 36-month period, the U-2Rs at Osan collected 97 percent of their tasked COMINT time (8,256 hours tasked vs 7,983 hours downlinked).24

The most significant period of tension during the three-year period occurred just after the assassination of South Korean President Park Chung Hee on 26 October 1979. Commander, U.S. Forces Korea at once declared a DEFCON* 3, which ordered all American forces in Korea into an advanced state of readiness. Not surprisingly, the JCS directed that the Korean-based U-2Rs increase their reconnaissance activities. From 26-31 October 1979, the U-2Rs flew eight missions with only COMINT gear and logged 72.2 hours of flight time, helping other national reconnaissance systems intentions at a time of unusual political upheaval in South Korea. The U-2R carried the "H" model pointing camera on all six of the 26-31 October missions flown in daylight (the remaining two missions launched at night). Bad weather precluded collecting photography on two of the six daytime sorties, but the pilots operated the camera and collected pinpoint photography on the four other sorties flown during the day. The acceleration in Korean U-2 operations brought on by President Park's assassination resulted in the Osan U-2 cadre launching 32 OLYMPIC GAME missions in

* (U) Defense Condition.
October 1979. At the end of 1980, the October 1979 total remained the highest number of monthly operational missions ever flown by Detachment 2, 9th SRW. 25

(U) During the last three years of the 1970s, the only blemish on the Osan U-2 operation was the crash on 5 October 1980 of U-2R #68-10340 in a mountainous area some 90 miles east of Seoul, South Korea. The pilot miraculously escaped serious injury, but the U-2R was a total loss. The wreckage, which included sensitive COMINT equipment and defensive systems vital to the national intelligence effort, was scattered over 20 square kilometers of rugged terrain. Not until the closing days of 1980 did Detachment 2 and 6903d Security Squadron personnel recover all the lost hardware. 26 Master Sergeant James D. Orr, assigned to Detachment 2, climbed a 3,500-foot-high mountain under adverse weather conditions and retrieved much of the lost equipment. General Ellis personally congratulated Master Sergeant Orr on his accomplishment. 27

OLYMPIC TORCH

(U) While the U-2R performed its most extensive reconnaissance mission in the Western Pacific, the aircraft's proven COMINT-collecting capabilities were needed in a new world area in the late 1970s. On 1 April 1979, Headquarters SAC activated Detachment 4, 9th SRW at RAF Mildenhall, United Kingdom. 28 It activated this organization to support a new reconnaissance operation in which a single U-2R performed European COMINT collection as its primary mission, downlinking the intercepted signals to an Electronic Security Command ground site at Metro Tango near Hahn Air Base, West Germany, for near-real time processing, exploitation, and dissemination. The Strategic Reconnaissance Center named this JCS-directed PARPRO mission--OLYMPIC TORCH. 29 The ESC technicians