CHAPTER V

/

SECONDARY DIFFRACTION

In the previous chapters, an approximate solution of diffraction
problems was carried out which was based on the representation of the
fringing field in the form of the sum of the fields from the uniform
and nonuniform parts of the surface current. The first field was
found by quadratures, and the second field by approximation; it was
assumed that the nonuniform part of the current near the discontinuity
(edge) of a surface 1s the same as on a corresponding wedge.

However, the fie;ds found by such a method are actually the
fields from éhe currents flowing, not only on the flat and curved
parts of the body's surface, but also to some extent on the geometric
extension of these sections. The error in the expressions for the
fringing field which is thus introduced is most significant with a
glancing incident wave, when the edge zone occupied by the nonuniform
part of the current is noticeably broadened, and also with a glancing
radiation, when the direction to the observation point forms a small
angle with the given section of the surface. In these cases, the
results obtained earlier are in need of substantial corrections. We

already talked about this briefly in § 6 and § 12.
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For the purpose of refining the solutions which were found
previously, it 1s necessary to assume that in actuality the currents
flow only on the body's surface, and that a wave travelling from one
edge to the other will undergo a perturbation at the latter. The pro-
cess of forming the fringing field when this occurs may be investigate
in the following way. The edge wave propagated from one of the edges
is diffracted by the other edges; the waves arising with this in turn
are diffracted by adjacent edges, etc. In this chapter, we will
investigate the case when the dimensions of the surface faces are so
large in comparison with the wavelength that it is sufficient to limit
oneself to considering the diffraction of only the primary edge waves.
This phenomenon we shall call secondary diffraction.

In this chapter, secondary diffraction by an infinitely long
strip (§ 20 - § 23) and ty a circular disk (§ 24) 1s studied. The
solution of these problems may be obtained by means of the principle
of duality from the solution of the diffraction problems for an
infinite slit and a circular hole in a flat, ideally conducting screen
In the latter case, the physical treatment of diffraction of edge
waves 1is significantly simpler; it is exactly for this reason, therefc
that almost all diffraction studies of edge waves are related to holes
in a plane screen. However, we will not take suéh a path, but we
shall investigate a strip and a disk directly. This approach has the
advantage that it is easily generalized to the case of three-

dimensional bodies.

§ 20. Secondary Diffraction by a Strip.
Formulation of the Problem.

Let an infinitely thin, ideally conducting strip of width 2a and
unlimited length be orientated in space as shown in Figure U45. A
plane electromagnetic wave incident normal to the strip's edges 1is
directed at an angle a to the plane xoz and has the following form:
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In § 6 approximation expres-
sions were found for the fringing
field in the far zone which did
not consider the interaction of
the edges. In the case of E-
polarization of the incident wave
:i (E.ll 0z) , these expressions may be

represented in the form
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Figure U45. The transverse cross Y 2nkr
section of a strip with the E =H,=0, !
plane xoy, x = 0, y = a and ?
X = 0, y = -a are the coordi- (20.02)

nates of the strip's edge; n is
the normal to the incident plane

wave front. and in the case of H-polarizatior
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Let us recall that the functions f and g included here are determinec

in the region |¢j<5 (when la|< %) by the following relationships:

cosgé—’»—-sina;_’ cosa‘;‘,«{-smf—%‘—! -
f()= sina— sing - )=~ sina—siny ’ (20.04
g)y=—1?2), g@=—[D) (20.05

The first terms in Equations (20.02) and (20.03) describe cylin

drical waves diverging from edge 1 {(y = a), and the second terms

describe the cylindrical waves diverging from edge 2 (y = -a). The



nonuniform part of the current on each side of the strip also has the
form of waves which diverge from edges 1 and 2, and are an "analytical
extension" of the corresponding terms in Equations (20.02) and (20.03)
The current wave encountering the opposite edge 1s reflected from it.
Or else one may say that each of the cylindrical waves propagated fror
edge 1 or 2 undergoes diffraction by the opposite edge (secondary
diffraction).

If the strip's width 1is sufficiently large in comparison with
the wavelength, then one may approximately assume that the oncoming
current wave near the strip's edge will be the same as on a corre-
sponding half-plane excited by a linear source, the moment of which
is selected in a definite way. It is also obvious that the current
waves reflected from the edge will also coincide. Consequently, the
problem of secondary diffraction by a strip may be reduced to the
problem of the diffraction of a cylindrical wave by a half-plane.

The field created at the point P by a current filament parallel
to the half-plane's edge and passing through the point Q (Figure 46)
may be found by means of the reciprocity principle. In the case of
E-polarization, 1t is determined by the relationship

E,«._—:%.!;E,(Q). (20.06)

and 1In the case of H-polarization

my
Hz“—--‘;,;;fiz(Q)- (20.07)
Here p, (mz) is the electric (magnetic) moment of the current fila-
ment passing through the Q; Pyy (moz) is the moment of the auxiliary
current filament passing through the point P with the coordinates
(6", R), and H, (Q) or Ez (Q) is the field created by the auxiliary

filament at the point Q.

Now let us remove the auxillary current filament to such a
distance that the cylindrical wave arriving from 1t may be considered



to be a plane wave on the section
from the edge of the half-plane
to the point Q. In this case, in
accordance with § 1 and § 2 the
field created by 1t at the point
Q will equal

E.(Q=E,:0)|u@d ¢ —¢")—ud ¢4+¢) }
H, Q)= H.(0)[ud, ¢ —¢")+u(d, ¥4¢")]-

(20.08)

Figure 46. Diffraction of a
cylindrical wave by a half-plane. The functions u introduced here
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and the quantities E, (0) and H, (0) are the values of the primar§
field created by the auxiliary filament at points corresponding to

the half-plane's edge. In accordance with Equations (1.21) and (1.22)
this field may be represented when kR >> 1 in the form

(20.10)



Consequently, an electric current filament located above an
ideally conducting half-plane excites, at the point P, the fleld

e i(:uem.r)
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and a magnetic current filament excites, at the point P, the field
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It is easy to see that the exponent e*WR—2e@®=%")1 55 these expressions
corresponds to the primary cylindrical wave arriving at the observa-
tion point P, and thne exponent g#*R—doct#’+¥)l copresponds to the reflec-

ted cylindrical wave.

The moments m, and P, must be selected in such a way that in
the direction ¢" = 1 (Figure 46) the filament would create a field
equal to the field of the primary edge wave above an infinite, ideally
conducting plane. We will conclude these calculations in the follow-
ing sections, but for now let us make still one other comment on the

formulation of the problem.

In the previous chapters it was shown that the scattering object
may be approximated by a series of sources — "luminous" lines and
points. Therefore, the problem of secondary diffraction may be formu-
lated as a problem of searching for functions which describe fthe
continuous change of the field of each such source during fthe passage
through the boundary of the light and shadow correspondirig to the

source.

§ 21. Secondary Diffraction by a Strip (H-Polarization)

A current filament with the moment m, which 1is positioned above
an ideally conductlng plane (h = 0, Figure 46) creates in space the

field



H,=ik*m,2:H (kR,). (21.01)

Far from the filament (when le >> 1), this field is described by the

asymptotic expression

z'&m+§&v .
H,=4zkm, *————— . (21.02)
: Y 2:kR,
But the primary edge wave in the direction ¢" = m takes the value
i@&+%)
]
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where Hoz(Q) is the field of the incident plane wave at the point Q;
g(Q) 1is the value of the angular function of the primary cylindrical
wave in the direction towards the opposite edge of the strip. Eguat-
ing Expressions (21.02) and (21.03), we find the filament's moment,
the field of which we use to approximate the primary edge wave, in

the form

1 .
mzzmHﬁl(Q)g(Q)‘ (2100“)

As a result, the field created by the filaments located above
the half-plane —e@<yY<2 and corresponding to edge 1 (Figure 47) may
be represented for region |¢)<—5 in the form

H:()=HI()+H (1) (21.05)

The function
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. +
describes the wave radiated by the source My, and the fu. ction
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m| M

describes the wave radiated by

the source mzz. The sum of these

Figure 47. The problem of waves equals

secondary diffraction by a
Strip . A o P14 ucOs(.... ..2‘:7...)
m’  and m7_ are the sources, L, et isina—sing)
1z 1z mw- Hougt (1) X j edg e "
the fields of which are used :
when apprcximating i1ie primary _“ ..
- ithr 4 v

edge wave being propagated fr-m — 7)
edge 1 (y = a); +H.;g(l)--‘7§—:::’—;.;~e
mgz and mgz are the .sources,

the fields from which are used

when approximating the primary

wave from edge 2 (y = -a). (21.08)
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The first term in this expression is the desired secondary wave from
and the second term is the fleld radiated by the filament

edge 2,
which 1s loacted above the ideally conducting plane x = 0 and has the
moment
mm_:_ 1 H 1 ika sina
e T Jak ng<)e ’ (21.09)
where
g=e __ ... (21.10)
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Summing the secondary wave which has been found with the unper-

turbed primary wave from edge 1, we obtain

H, (1«-°)t:
“Vkacos :
2 i aite ina—sin=s
wHu;wg(I)xj "dq T A
o
' i kr*»-
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This expression reduces to zero if one assumes ¢ = - m/2; consequently
the secondary diffraction eliminates the field discontinuities which
cccurred in the previous approximation when ¢ = - m/2. However, in

the direction ¢ = 7/2 the field (21.11) is different from zero. Since
H 1s an odd function of the x coordinate, the relationship

kﬁ’ .==_o70 means that the fringins field components H, and E, will
undergo a digcontinuity with a transition through the direction

¢ = m/2. The reason for such a jump, as before, is that in our calcu-
lations the plane x = 0 is a plane of currents. By finding the
secondary wave from edge 2, we actually considered that the diffrac-
tion takes place not on the edge of a finite width strip, but on the

edge of an ideally conducting half-plane —a<y<oo .

Again the resulting discontiruity has an order of magnitude of
pﬁ;%ff . It 1s clear that one may completely eliminate the fileld
discontinuities only with consideration of multiple diffraction.
However, the calculation of fields arising with multiple diffraction
requires specific consideration of the following terms in order of
smallness in the expansion of the primary edge in inverse powers Bf
Y* (see, for example, [46]). All this greatly complicates the cal-
ailations. Therefore, we, using the condition ka >> 1, will limit
ourselves to an investigation of secondary diffraction, and in order
to elilminate the discontinuities in the plane z = 0, we will proceed

in the following way.



Let us consider the gquantity §(1> in “he Expression (21.11) to
be a function of the angle ¢ [see Equation (20.05)], that 1s, let us
replace g(l) by the function g(l). 1In this case the equation

H.(1—2)=
¥ka cosf— .
(+-%) -
:::H". _.?_,g“)x 3 :q dq ika(stn s—-sinq)+
* . .
©
L ”+T .
+H“g(l)°_.r,2..;§_.e‘“mﬂf~“"ﬂ . (21.12)

will give qualitatively correct results not only when ?c~-%;, but

also with all other values of ¢. Actually, the Fresnel integral is
close to zero if V@Ecos(§-~§})>4 , and in Equation (21.12) only the
second term remains, as must be the case. Therefore, Equation (21.12,
may be investigated as an interpolation equation, and it may be
applied with;any values of ?O?!g*;! It is easy to establish that
now the fringing field does ot undergo a discontinuity with the
passage through plane x = 0, since Expression (21.12) becomes zero

when ¢=-& %—

It is interesting to note that Equation (21.12) automatically
follows from Equation (21.08) if in the latter equation one replaces
g(l) by g(1). Essentially, this substitution is equivalent to the
assumption that the moments of the filaments, the fields of which are
used for approximating the primary edge waves, depend on the radiatior
direction (that is, on the azimuth ¢ of the observation point)

- 1 i na -
m g_mi;*;z;ﬁﬁozg(l)e*a" . (21.13)

Such a determination of the moments of the auxiliary linear sources
is used, for example, 1in the work of Millar [47].

Precisely in the same way that Equations (21.06) and (21.07)

were obtained, we find (when x > 0)



F4 kﬂ €O3 (
G‘k'

HF (@)= Hug(2) J eV = et sin ety

A (21.14)
2V%cos(~§-+~;'~)
- I - . gt oftr ika (sin x—sin ¢)
HT(2) =+ Ho,g(2) \ g e e TGN ey
. » ,
(o) (21.15)

- & —ika (sin n«-—s;n 28
+ Hog (2) Vonkr e -
These expressions give the field created by the filaments which are
located above the 1deally conducting half-plane —oo<y<a and have

the moments

— 1 - —ikasina
m=—ml = H.g(2)e™ """, (21.16)
In accordance with Equation (21.04), here
‘g(2)-==g(2)fw_:”o, (21.17)
-2
Furthermore, summing (21.14) and (21.15), we obtain
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Here the first term is the desired secondary wave from edge 1, and
the second term is the field radiated by the fllament which 1s locat
above the ideally conducting plane x = 0 and has the moment mgz.
Summing the secondary wave which has been found with the unperturbed

primary wave from edge 2, we have
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It is not difficult to see that the resulting expression becomes zero
if one assumes ?:=%} in it. Consequently, the secondary diffraction
eliminates the field discontinuity which we had earlier (§ 6) when
¢= 5, but at the same time it leads to a field discontinuity when
9:z-%; . Again the resulting field discontinuilty may be eliminated
by the above indicated method, replacing the quantity %(2) by g(2)

— that is, by assuming the moments mgz and mgz depend on the obser-
vation angle ¢. Actually as a result of such a substitution, we

obtain from (21.19) the expression

a¥'ka cos ( :

H, (2 — 1)3 Hoz“;-:“‘g(Q) 5 :‘q a‘q 2’" . ika (sin 3—-sin,)+
o . .
i#r+ )
+H“g(‘2) ym i e-—-tka(sincs—-stnq)’ . _ (21. 20:
which vanishes when ¢==45 . This expression may be investigated a:

an interpolation equation which describes the field created in the
region lwh;7i by the primary wave of edge 2 with consideration of
its diffraction at edge 1.

Now summing (21.12) and (21.20), we obtain the following expres:
sion for the total field scattered by the strip:

Ho=H.[G(1, g)g (1)eeeinasn9 4
:(m. %.)
e

e (21.21

+G{2. g?}g (Q)e«o&a {sin s ~ain 9)1

Here
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1s the shading function of the primary wave travelling from edge 1,

and

2Vl;;cos(«:—-+~§-
2 —i7

G2, 9)= =" ! ng e'?dg

. ' ‘ (21.23)

is the shading function of the primary wave travelling from edge 2.
These functions show that the primary wave from edge 1 undergoes the
greatest perturbation when ?z:mug- , and the wave from edge 2 under-
goes the greatest perturbation when p::%}.

An important property of Equation (21.21) is that it becomes
zero when ?==i:%} — that is, the field discontinuity which we had
earlier at the plane x = 0 is completely eliminated. \

In concluding this section, let us return to Expressions (21.11)
and (21.19) which lead to discontinuities of the fringing field in the
plane of the strip (x = 0). One may show that the sum of these

expressions
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agrees, when)fEEcos(§~i-%)>>l , with the asymptotic solution obtained
in the book [50] by means of integral equations. The solution found
in [50] has the greatest precision when @:=0,"¢=0 | and it is complete

-
— i -
useless 1f a==*=45 or p=t-4 .

§ 22. Secondary Diffraction by a Strip (E-Polarization)

It is known that a current filament with an electric moment P,
which is found gt a distance h from an infinite, ideally conducting
plane (see Figure 46) creates in space the field

E.=ik*p,z[H{"(kR,) — H" (ER,)]. (22.01)

With small values of h (and R, , >> kh®), this expression is trans-
3

formed to the form

——— > ' '
Gx ¢ (kR.‘l"T

E,zwiQp,k’hsiut{JV;z}—;e ~ ) (22.02)

The primary edge wave is determined by the relationship

o ai(kk,—{-_—}) '
E:=Eu@) (= (22.03)

Y 2ka.

where E z(q) is the value of the incident plane wave field at the
point q (RO = 0). Consequently, the primary edge wave in the directl
Y = 0 may be investigated as the wave from a current fillament located
above an 1ldeally conducting plane if one assumes the filament moment

tc be equal to

' i ) :
Dy == ArB EQZ{Q) sind fsg,:z{). (22 . OIJ,:

The field, created at the point P by the current filament with
a moment P, which 1s parallel to the half-plane's edge and passes
thranoh the point Q, is determined by Expression (20.11). Expanding



the right-hand member of this expression into a series in terms of the
small quantity h(h » 0) and limiting ourselves to the first term whick
is different from zero, we obtailn

, d "
Ev= ik'pasy lu(d, ¥ —9")—

| ’ " | 2‘: {.wa
wu(d.?—}f?)!kl:o 7 ) (22.05)

By means of relationships (22.04) and (22.05), one may show that
current Silagents with moments plz and p1 which are located on the
ideally conducting half-plane —a<y<oo and correspond to edge 1 (see
Figure 47) create in the region |¢?|l<+ the field
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ikr

2
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. e
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+ Eaf (1) cos p S oI am2009), | (22.06)

The current filaments with the moments pgz and p;z which are located
above the ideally conducting half-plane —eoc<gy<a and correspond to
edge 2 create in the same region the field
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The first terms in Expressions (22.06) and (22.07) are the desired
secondary waves, and the last terms in the expressions are the fields

from the current filaments located above the ideally conducting plane
X = 0 and having the moments

Vo= g Eor UC P o= i Bor @7, (22.08)
where
[(1) [@2) (22.09)
f“)“"cosyf 2 ”2 COS?’-—_;_..n

Summing the secondary waves which have been found with the

unperturbed primary waves, we obtain the total field scattered by the
strip
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Now assuming, as 1in the case of the H-polarization, that the
. +
moments piz and pgz depend on the angle ¢, by replacing

jm by 1 ana fi vy L (22.11)

cosy
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There
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are the shading functions. They show that the primary wave from edge

1 undergoes the greatest perturbation near {:Q*N; , and the wave from

adge 2 undergoes the greatest perturbation in the vicinity of @g:%n

§ 23. The Scattering Characteristics of a
- Plane Wave by a Strip

Expressions (21.21) and (22.12) which were obtained above for
the fleld scattered by a strip approximately take into account the
interaction of the edges and are valid when [9h<%; . However, they
are not applicable with a glancing incidence of a plane wave on a

strip (when a===4 ).

In order to find equations which are applicable in this case,
let us proceed in the following way. Let us write the expressions
for the field radiated by the strip in the direction o with the inci-
dence of a plane wave in the direction ¢ (Figure 45)
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e le]< 3 , but ¢ cannot approximate Zm/2. NOW Llev uo siow-
2 expressions for the fringing field must satisfy the reciprocity

inciple — that 1is, they must not change with the simultaneous re-

acement of a by ¢ and ¢ by a. Comparing Equations (21.21), (20.12)

d (23.01), it is not difficult to obtain the expressions

Ev=—H,=EuF (1, 9)F(2, a) j(1)en =20}

A i(krf{«)

i FF@ @) F(1, a)f@)e ) e,
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62, \G l, - ika(sina— sing)y € ,
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4

J. (23.02)

hich satisfy the reciprocity principle, have no discontinuities any-
here, and are suitable for making calculations with any values of a
mnd 9 Cl?éégw l?hégg). From the second equation of (23.02), it

‘ollows that H, = E¢ = 0 when ?=iir§~--that is, the fringing field
= 0. Moreover,

ioes not experience discontinuities in the plane x =

i, = E, = 0 with any values of ¢ if a==z=—4 — that is, a plane wave

z ¢
>olarized perpendicularly to the strip does not undergo diffraction

vith a glancing incidence.

The resulting Equations (23.02) may be investigated as interpo-
lation equations. Actually, with [a|<5 when Vﬁaumt§;t~§)>>l the
functions F(1, 2), F(2, 2), G(1,a) and G (2, a) are close to one, and
Equations (23.02) change into the previous Expressions (21.21) and
(22.12). But if }v}{%} and Vﬁaﬂm(§<t~%)>l, then the functions

F(, 9 F2, 9 , ¢ (1, ¢) and G (2, ¢) are close to one, and Equations

(23.02) change into Equations (23.01). Let us recall that the func-

tions F and G are determined by relationships (21.22), (21.23) and
(22.13).

In the direction of fhe principal maximum of the scattering
liagram (¢ = o), Equations (23.02) take the following form:



H,— H,, [(:zszza cos 1 +§};>G (172) G (2, a)4
‘ i

oG( a) aG(1, (h'+7)
+G(1, 288D G, ay ,“’}mm ,

E.=F,: {(thncma »»»»» )F(l a)F(? a)+

, ’ i(br+T)
dF(Q, d) . I?Fﬂ, 1) e - ,
: R R e R (23.03)

n

nce when a=x—5 we have

" H,:—‘-‘-O,

AR S Wia
2

eim ()¢ v ety

2ka ' -
.."’“’s qu] (23.04)

It is interesting to observe that Expressions (23.02) to some
xtent take into account, in additlon to secondary diffraction, .lso
ertiary diffraction. Actually, for the values ?1k<§- and {?L<%} s

. 3
W - - -

e have

G(l, 9 6(2’ a) eltelsin a=sing) _ cita(sina—sing)__

oh ‘

eikn(2+ sina¥sing) ! —; Uta(2~—sin u—-—sln 9 f
~2 fmcos (*—;—*%) ¢ 2 Y =ka cos ( “‘“)
i aika(d —sin a+sing)
+umuws(;ﬂ~ )ms 2) | (23.05)

he physical meaning of the four terms in the right-hand member of
his equation 1s illustrated in Figure 48 (Figure 48a corresponds to
he first term; Figure U48b corresponds to the second term, etc.).

Taking into account condition (6.15), one may write the equations
r the fringing field in the left half-space ( 3 <I#<= but %éliiig- )
1 the same form as (23.02). Thus, the functions G(l, «), G(2, a) and
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Figure U48. The schematic diagram of the
waves corresponding to the various terms
in Equation (22.05).

F(1, a), F(2, a) will, as before, be described by the relationships
21.22), (21.23) and (22.13). The remaining functions in Equations
22.02) will be determined when ;-sq?k;s by the following equations:

+2V¥a sin (-«'— + -3-.)

L T2
.G(1, 9)= ——2?—; e . 5 e'dq,
]
) =¥ ka sin «;- -?-) i
I S KL
6(21 ?)“"' ,'—'; € qu .
0 J (23.06)
. /= ' ]
) _‘% :tzmsln{—z- + %)
F(lo ?)-—":—’ 7..:: e [ X ewd'! -4
: : ()
'4‘ i elita(l+sing) J
4Vka sin (—} +%~)
. F¥Easin .}....;.)
2 'T ;
Feo=p=c ‘[ | u=
4
;,{é,. “.i‘fi’;l;““i’}‘ (23.07)
Vka sin &*‘;‘“"'“‘5)

4
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aty —9 ‘ aty Iy

; cos - 5 +s§n 3 ’ C’gsmé...___,m,__,i’__ 5 03
g =ty EO = (23.08)
f(1)=g(2), f(2)=-g(l)~ (23.09)

he upper sign in Expressions (23.06) - (23.09) must be taken when

“4?“5“ and the lower sign must be taken when ~uﬁ¢<-—~—-‘;~ .

b

‘Assuming ¢ = - m + a (with 0<a<~§-) in Equations (23.02) and
(23.06) - (23.09), let us find the field radiated by the strip in the

direction toward the source
 He=H,[G*(2, 0)g (1) P> 4
i er+ -}-)
3 —i2ka sin =y €

1

E,#EG,[F'(Q, a)f (I)eizka :ln¢+ .
’ (kr-i--:—)

1 ~i2ka sin a ’
+F (1, 1) f(2)e 1~ |

(23.10)
where
| 4-sina I —sina .
g)=f@Q)=— 72> e@=i)=Furey (23.11)
When o = 0, we have
t{za— =
Hy= """‘H.z [(2tka+1)G(1, 0)..2/2’“’ ( ‘)]X
i kr-i‘-»‘«-) o .
- 1 (2&::4- —5‘—)
Eo= Ef 2 ke ]
ifare = ‘) | ?
; 2 . .
RE 0 7 (23.12)




Calculations of the scattering characteristics were carried out

ased on the equations derived above. These scattering characteris-

ics are the functions h(a, ¢) and e(a, ¢) determining the fringing
ield by means of the relationships
s 3
i
E;onzkae(a, ?)V——.z..«. e ( ¢ ).
nkr
£(~+3})

H.=H,kah(a. @)‘/;g.;.e

(23.13)

‘he calculations were perforiied for the values ka=¥28 and ke=)8§0 -
In Figures 49 - 62, the following designations were used: 1) the
functions h and e correspond to the rigorous theory; 2) the functions
19 and ey correspond to the field from the uniform part of the current
(the physical optics approach); 3) the functions hy and ey correspond
to the field from the uniform and nonuniform parts of the current,

but without consideration of the interaction of the edges; 4) the
functions h2 and e, correspond to the fringing field with considera-
tion of secondary diffraction calculated on the basis of equations
(23.13), (23.02) and (23.10). Thus, in accordance with § 6,

sin'fka (sinx —sing)]

e 1 et
himcos ptlnliatilns — sto o) (23.14)
and
e, | sin{’w(si: GLSi!; ?)l;t jcos [ka(sina—sin 4))
}“""2"{5{ sin ;’ ' cos‘a—;? ' (23.15)

where lal< 3, lp|<+ -

The results obtained show that our approximation equations agree
satisfactorily with the rigorous theory already when ka =} 28 s

although in the given case approximately one and one~half wavelengths

are fltted into the wldth of the strip. In the direction toward the

g 1
sou?ce(§m““*+@'@%§5§9 , and also with glancing irradiation of the
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Figure 49,

The scattering diagram of a field by a strip as a function of
the incident angle of a plane wave (a) and the parameter vka.
curves correspond to various approximations.
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The same as Figure 49 with a=—-=
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Figure 51. The same as Figure 49 when
o = -1 + a.

strip (a = -m/2), when the functions ey and hgys and ey and h1 lead to

qualitatively incorrect results, the functions €5 and h2 give, as in
the remaining cases, fully satisfactory results. Actually, the curve
|h,| coincides almost everywhere with the curve |h| (Figure 49-54)
within the limits of graphical precision. But the calculated values
of the function Ie2I differ from the corresponding values of the
function |e| only by hundredths of a percent (Figure 55 - 62).
better agreement with the rigorous theory associated with the E-
polarization 1s explained by the weaker interaction of the edges in
this case. A certain discrepancy of the curves |h,| and |hf in the
vicinlty of the principal scattering maximum is explained by the

The

interpolation character of our equations.

As a consequence of the interpolation character of Equations
(23.02), the integral scattering diameter obtained from Expressions
(23.03) when o = 0 does not coincide with the integral diameter found

by Clemmow [46] in the form of the first terms of an asymptotic ex-

pansion in inverse powers of vka. However, our equations,as distinct

from the similar equations obtained by other authors, allow one to
calculate the scattering characteristics with any incldent angles of

the plane wave.
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Figure 54. The same as Figure 52 when ¢ = -T + o.

Let us note that the functions e(a, ¢) and h(a, ¢) for Figures
49 - 52 were calculated on the basis of rigorous series which were

obtained by the separation of variables in the elliptic coordinate

system (compare [23])(?).

§ 24, Secondary Diffraction by a Disk

Let us refine the approximate solution of the diffraction pro-

blem for a disk which was found in Chapter II.

Let an infinitely thin, ideally conducting disk of radius a be
found 1in free space. Let us orientate the spherical coordinate system
in such a way that the normal n to the incident wave front would lie
in the half-plane ¢ = m/2, and form an angle T(OSZY<*%) with the z
axis (Figure 63). Let us prescribe the incident plane wave field in

E, ik sin T4z cos ) . H= H'eik(ﬂ siny +zcos 7). (24.01:

E=

(1)Footnote appears on page 162.
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In accordance with § 12, the fringing field in the plane
$ = *m/2 is described (when R >> ka® ) by the equations

E,=—H, =27 i1 @25 — [0 40 +

. : eikR
0@ )10, )4, 0

H = E, ="T (g2, &) — g1, /0 +

+ilg@ )+g NAON - (24.02)

These expressions are valid when 3<§- and 1<}~ . The quantities
included in them are determined by the relationships

349 d—20 -
;o cos 7 - $in 3

f(1, %)=

smc)-—-—sinb !

340 8--»0
cos —3 5} sin 3

f(2. &)z.;..

sind —sind °*

g(lt a)::'"‘“'l(zv 8)' g(z' a)::"‘i(lt 8)* y
(24.03)

{==ka (sin — sin8), (24.00)



Let us note that here

f(1) with p=-% |
f(1,8)="1 I
f(2)with?z.-»§»»
{
[ uith e=
f(‘?' :;)m"::4 ’£ ’
(D withe=——
{ =
g(l) withe=-5
g(l’ a)"‘_"— - v
'3(2)witm=—-~§~
L .
l'g(2) with ¢=—
g2, 9= .’
[g()withe=— 3
' ! (24.06)

and the functions f(1), f(2), g(1l) and g(2) are determined by the
Equations (12.03) and (12.04).

When ¢ >> 1, Expressions (24.02) take the form
(. |

Ez——-—” :.-—-.---{f(2 G)e( ‘)
. (-“—' o*R
—f(Q,%)e ( )J_._.

t— :.’."..)

{g(2 ) e‘(

w——

. daH,,
E —
¥ ]/2.,

“21 . ,
"‘&’“'a);‘(t )]'gi ) (24.07)

I

H

’

They show that the fringing fleld in this region may be investigated

as the sum of spherical waves from two luminous points on the rim of

the disk with the polar angle ¢y = #1/2. The diffraction by a disk of

each of these waves may be studied as was done in the case of a strip

but we shall proceed differently.



Starting from Expressions (24.18) and (24.19), it is not diffi-
cult to write interpolation equations for the fringing field which
are suitable for any values of y and & in the interval (0; w/2),
but when ¢ = */2;

) 5‘2503 sy £ -
B ——H,= {[F(Q,G)F(I,o)f(2,o)~
—FLNF 9 f(LaL Q)i [FE2.9) F(L,8)f (284
. N . ikR
FF(LO)F@.2)] (), 6 % (24.20)

Ey= H ="M 629602z —
—G(1,9)G25) g(L,a)]J, (&) i[G2,9)G(1,2) g(2, &)+

HGLYCRY LY O) o - e (24.21)

Let us note that when y = 0 these expressions will be valid for
any values of the azimuth ¢ , since then any point of space may be
consldered to be located in the incident plane.

In the direction of the scattering diagram's principal maximum
— that is, when §==Y,?==%% — the fringing field (24.20) and (24.21)

takes the form

ika? R
Egzn—-Ho::——.:z—- EO?'F(sz)F(l'.{)TCOSY'l
| ihat oikR
Eo=H,=*"H 62161 1) % cosT- (24.22)

However, these expressions have an interpolation character,and with

small values of the angle y i1t is impossible to consider them to be

more precise than the simple equations of.-§ 9 and § 12. In particular,

with vy = 0, when the fringing field must not depend on the incident
wave polarization, they give values which are different for the E-
polarization and H-polarization by small quantities of the order of
\;%3 . Therefore, in this case (when y = 0) 1t makes sense to use
Expressions (24.20) and (24.21) only far from the z axis, switching

to Equations (24.02) near the z axis.



In the case when the current filament passes through the point
@ parallel to the half-plane's edge, the field at the point P is
determined — in accordance with (20.11) and (2¢.12) — by the

equations

E i 1 & oM nid o ., o f(t‘f',‘“‘i‘}‘
X“““l p‘é{u( 7? *?) ll(‘ v? +?)l k“é*e ¥
mwf}

(24.15)

.
o L LT e ——

o —
I =ikm; u(d, 9" — ¢") Fu(d, ¢’ 49")] I/i%‘ € (

With the absence of a half-plane, these sources create at the point
P the fleld

]

kR

=
e R L - :
2=z ( 4 ) e___;kd' cos (§2—g’?)

R;—e

5w (- 7) |
cgn —p b ¥
Ezzlk’sz«woe e —ikd cos (¢*— )’

H,=ik*m,
: : (24.16)

s .

Comparing Equations (24.15) and (24.16), we obtain the same Expression
(24.14) for the shading functions. Consequently, a spherical wave in
the direction perpendicular to an ideally conducting half-plane is

shaded by it the same as a cylindrical wave.

Let us note, however, that Expressions (24.14) are not equivalent
to Expressions (21.22), (21.23) and (22.13), since the first represent
the shading function by a half-plane of a wave from a single source,
and the latter represent the shading function of an edge wave which
we approximate by waves from two sources located on both sides of the
corresponding half-plane. Since the shading functiorns of sphericél
and cylindrical waves are the same, the edge wave shaaing functions
of a strip and a disk also will coincide.

Therefore, the approximation expressions for a field scattered

by a disk which take account of secondary diffraction may be repre-

sented in the region‘9==::€},0<:0<:€; (with ¢ >> 1) in the following

form:



{_WM
E,=— Hy= VM{";‘{%}:'(% éﬁff -
~ift=2) e
—F(1,9)f(L,8)e (=% | %
de
: i&ff;}.& - i((wT)
_ 18Ty g ? e
H, =E, V%E{G(Z )8 (2, 8)e
‘ R L ikR
._,,G(x,a)g(l,a)e( ‘)]5,%». (24.17)

where the functions F and G are obtained from Equations (21.22),
(21.23) and (22.13) by the replacement of ¢ by & . Equations (24.17)
may be investigated as the asymptotic representation (with ¢ >> 1) of
the following expressions:

E =—H,= "‘f"‘-‘“ {[F'(z, D@3 — F(1, {))f(l’é)]-,x €+

€

@D @)+ F L0} %

H,=E,=27={162.0g@2.% — 6(L.Ng(1L4AO+F

+i{6(2.a)g(2.8)+G(¥.ﬂ)g(l,3)lf.(€)}3§3. | _ (24.18)

These expressions hold in the region 9<—;—~ for the values 8'::—"25— and
Yj<~§-. Using Equation (24.18), let us write the expressions for the
field radiated by a disk in the direction Yy when a plane wave is
incident on it (from left to right) at an angle &

A A

CLFAI@NLOFIFe LY+ |
+EADFRNLON . | )
Ho=E="1=~160.5801:9)

—G (L9 g2 ). DGR DL+

.,.,+G(1’Q)g(2,gnjz((),3k—-. 4 ' (2”.19)

= L ik
Here 1=- (‘{<*§') and &< -



Equations (24.20) and (24.21) have the following important pro-
perties, They do not have discontinuities, they include the case of
glancing incidence of a plane wave, and they satisfy the reciprocity
principle. From them it follows that E,=H =0 when &¥x§; -—— that
is, the fringing field does not experience a discontinuity on the
plane z = 0. Moreover, Ey=H_ =10 with any values of 8, if 1=
— that is, a plane wave polarized perpendicular to the disk's plane
does not experience diffraction with glancing irradiaticn of the

disk.

As 1n the case of diffraction by a strip, the new approximation
expressions consider to some extent tertiary diffraction [see

Equations (23.05) and Figure 48].

Using Condition (9.04), it is not difficult to write equations
L4 ®
for the fringing field in the left half-space (g <¥<®% ¢==7)

Eo?

%éfm V@-wwum@q—
-—F(l,t--ﬁ)F(Z OHLILE)+
+i[F(2,=—) F(L,8) (2,84
+F(1,a_-a)P(z,a)f(l,a)]J,(C)}f—gf, (24.23)

Ey=H, =3[0 (2. =—9)G (1.5 g(2.9)-

—G(L,=—)G(2,3)g(1, )/ O+
+i[G (2.5 —9)G(1,5)g(2,8)+

6L m—0)G2.3)g(LaLEO } e | (24.23)

where the functions f and g are determined by the equations

, 340 23—
, cos —5— +sin—5— 9 ] '
g(1,9)=[(2,8)= sinéd —sin ®

)
15 2 8 cosa;-a-f—slna;o ,?
Fa, )=8(2, )= sind —sind ) (24 2L)
In the direction towards the source(&==t-—1,?==—-%%) ,» the

fringing fleld equals



iaE '
B, = Hy= T 1P (1L8)f (2.8 —
— P [LA1L@ [P, 2.8+
[ ]
R, 0O .
iaH,. " :
Ey=H,=—=1G"(1,%) g(2.8) —
— 62,8 g (L4 O+i[G (L) g 2.8+

e

ikR
+62.0gL L0 %, | (24.25)
where
' d=—1; 1 }
fay=g@y=—1tr, 4
a __ l—siny 1
f.0=gla)= 728t | (24.26)

As was already noted, it makes sense to use Equations (24.25)
only far from the z axis, changing to Expression (12.15) of the pre-
vious approiimation in the vicinity of the z axis. A calculation of
functions E(=—7¥) and E(z—7y) (Figures 65 and 66) which determine
the effective scattering surface [see Expressions (12.17)] was per-
formed on the basis of these équations when ka = 5. A comparison was
carried out of this calculation with the results of measurements.

The two experimental diagrams (the dashed lines)(2) depicted in
Figure 65 characterize the experimental precision. As distinct from
the previous approximations, which lead in thils case to qualitativel;
incorrect results [see Equations (10.06), (10.07) and (12.15)], we
observe a satisfactory agreement of theory with experiment.

For verifying the results obtained, a calculation was also ~
carried out of the functions V(l)(ﬂ ) and'V(Z)(a ) [see Equations
(9,07)] when ka = 5 (Figure 67 and 68) with normal irradiation of a
disk by a plane wave. Curve 1 corresponds to the field calculated
from the rigorous theory [34]; curve 2 corresponds to the field from

(
‘ngGotnote appears on page 162,



Figure 63. - The cross section of  Figure 64. Excitation of a half-
a disk with the plane yoz; n plane by an elementary dipole
is the normal to the incident which is located at the point Q.

wave front.

Let us compare the shading of spherical and cylindrical waves
by a half-plane. Let an ideally conducting half-plane be found in
free space, and let there be an elementary dipole at the polint Q
(Figure 64). Let us find the field in the plane perpendicular to

the half-plane's edge and passing through the point Q.

In accordance with the reciprocity principle, it is determined
for the electric dipole by the relationsi:ip ;

E.= 7= E.(Q) (24.08)

and for the magnetic dipole by the relationship

H,::.%H,(Q). | ( (24.09)

Here pz(mz) is the electric (magnetic) dipole moment found at the
point Q; p and m,. are the moments of the auxillary dipoles which

0%z
are placed at the point P; EZ(Q) and HZ(Q) are the flelds created by

the auxlliary dipoles at the point Q.



Now let us remove the auxiliary dipoles to such a distance that
the spherical wave arriving from them may be considered to be a plane
wave on the section from the halir-plane's edge to the polnt Q. 1In
this case, in accordance with Equation (20.08), the field created by

the wave at the point Q will equal
E.Q=E.0)[u(d, 9 —¢)—u(d,¢+¢)) } (24.10)
H, Q) =H,:(O)[u(d, ¢ —¢")+u(d, ¢ +9") )
The expressions

kR ‘ kR
Eoz(0) ==k pos o, H o2 (0) = kmgs 2 (24.11)

R

determine the fields created by the auxiliary dipoles in free space
(with the absence of the half-plane) at the point O.

Consequently, the fields excited at the point P by the electric
and magnetié dipoles which are found at the point Q above the half-

plane equal respectively

kR )
Ei=kpuld, e —¢") —ud, ¢ )] %

Hy=kmlu (@ —")+uld ¢+ % - | (24.12)

With the absence of the half-plane, these dipoles create at the point
P the field

B f i ¢ 2, ey
E — b3 « ikd €03 (33 -
P k t 5 € {5 ’a

sz___ m‘g;fe-ikdcos(v'wv") ’ (214.13)

Comparing Expressions (24.12) and (24.13) we find the shading

fnetions

Riad cos (57-—s)
L

#(d, 9" =) —uld, ¥ +¢")

f e
T . 1
[u{d, 9 —9") - u(d, o' ¢")] ™ &5, (24.14)

F=
G—
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Figure 65.

The diagram of a disk's effective
scattering surface when the plane wave's

magnetic vector is perpendicular to the inci-
dent plane.
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Figure 66. The calculated dilagram of a
disk's effective scattering surface when
the plane wave's electric vector 1is per-
pendicular to the incident plane.

the uniform part of the current (the physical optics approach). Curve
3 corresponds to the field from the uniform and nonuniform parts of
the current, but without the interaction of the edges. Curve U4 corre-
sponds to the field with consideration of secondary diffraction. As
1s seen from these graphs, consideration of the edge interaction re-
fines the previous approximation and ensures better agreement with

the rigorous théory results.

The problem of secondary diffraction by a cylinder may be solved
by a similar method. However, considering that the corrections which
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Figure 67. The function V{ﬁh‘fOr a
disk with normal incidence of a plane
wave (curve 4). Curves 1, 2 and 3 from
Figure 20 are drawn for comparison.

depend on the secondary diffraction here are small (on the order of
1 dB) when ka = m, k1 = 10m, and the equations are substantially more

complicated, we shall not cite them here.

In the problems investigated above, the edge waves have the
character of cylindrical ci* spherical waves — that is, they decrease
rather rapldly with the distance from the edge. Therefore, in the
case when the linear dimensions of the faces are approximately two
wavelengths, 1t 1s sufficient to l1limit ourselves to a consideration
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Figure 68. The function ng%for a
disk with the normal incidence of a
plane wave (curve 4). Curves 1, 2 and
3 from Figure 21 are drawn for
comparison

of only seccndary waves. In Chapter VII we will investigate the
problem of a dipole in which the edge waves decrease so slowly that

it 1s necessary to consider multiple diffraction.

§ 25. A Brief Review of the Literature

In this and previous chapters, approximation expressions were
obtained for the scattering characteristics of a plane wave by various
bodies. These expressions were derived with the help of physical
conslderations which do not gfeteﬁd to be mathematically rigorous,

and they are adequate for sufficiently short waves. In the literature



there are a number of works in which similar results were obtained.

A majority of these works also are not characterized by mathematical
rigor, and they are based on certain physical assumptions. Therefore,
one may relate them to the physical theory of diffraction. Only 1n

a few works (related to the simpler diffraction problems) did they
succeed in obtaining specific results at a higher level of mathematica.
rigor — more precisely, while developing asymptotic methods of mathe-

matical diffraction theory.

We will briefly 1list the most important results obtained in a
number of papers and books, grouping the material in thevfollowing

seguence:

1. Diffraction by plane, infinitely thin plates (an infinite
strip, a circular disk) and diffraction by auxiliary apertures in a
flat screen (an infinite slit, a circular hole).

2. Diffraction by three-dimensional bodies with edges (a finite

cylinder, a finite cone, etc.).
3. Other diffraction problems.

When investigating the first group of diffraction problems, it
is necessary to keep in mind the principle of duality [4] which enable
one to easily change from a strip to a slit, from a disk to a circular
hole, etc. In the literature as a rule, they preferred to investigate
apertures 1n an infinite flat screen, whereas in our book, diffraction
by a strip and a disk was studied. This approach facilitates the
transitlion to three-dimensional bodies (see the remarks at the )

beginning of this chapter).

Based on the tlme of appearance (if we do not consider the works
of Schwarzschild [15] which we talked about in the Introduction), one
should first of all mention the works of Braunbek [28 - 30] which
were devoted to the diffraction of a scalar wave by a clrcular hole
in a flat screen. Assuming that the plane wave 1is incident normal to



the screen, the author obtained an approximation solution in the form
of a surface integral. The boundary values of the integrand were
taken from the rigorous solution to the problem of diffraction by a
half-plane which was found by Scmmerfeld. The fileld was calculated
in the far zone on the axis of the hole and far from it, and also on A
the axis near the screen. Using this approach, Braunbek recently
solved the problem of scalar wave diffraction by an aperture in a

concially shaped screen [31].

In the papers of Frahn [32, 33], this method was used for the
diffraction of electromagnetic waves. Diffraction of a plane wave
incident normal to an ideally conducting screen with a circular hole
was investigated. The field was calculated in the hole and on the
'axis, and also the field in the far zone and the transmission coeffi-
clent (the ratio of the energy passing through the hole to the energy
falling on it) were calculated.

In these works of Braunbek and'Frahh, secondary diffraction was
not considered. The expressions obtained by them for the fringing
field intensity in the far zone agree with similar expressions
focllowing from our equations (§ 9).

Karp and Russek [51] studied diffraction by a slit in the case
when the incident wave's electric vector is parallel to the slit edge.
They investigated each semi-infinite part of the screen as a half-
plane excited by the incident wave fleld and a "virtual" source
localized on the edge of the opposite half-plane. The moments of
these sources were determined from a system of two algebralc equations
which were obtalned by using the asymptotic expressions resulting
from the rigorous solution for the half-plane. Secondary diffraction
was considered, and. partially the general interaction. Speclal
attention was allotted to calculating the transmission coefficient,
but equations for the scattering characteristics which would be
suitable with all directions of incident wave propagation were absent.



Clemmow [46] and Millar [47 - 491 in thelr works calculated the
transmission coefficients with normal irradiation of a slit and a
hole, and also the fleld in the hole. The solution was sought by
means of curvilinear integrals of the fictitious linear currents on
the aperture edges. The interaction of the edges was considered.

The case of inclined irradiation was not investigated, since it turned
out to be too complicated for investigation by this method.

The "geometric theory of diffraction" of Keller [42 - 447 which
deals with diffraction rays is of special interest. The phase and
amplitutude corresponding to each diffraction ray are determined at
each ray point on the basis of geometric considerations and the law
of the conservation of energy. The initial diffraction ray amplitude
is assumed to be proportional to the incident ray amplitude at the
point of its diffraction. The unknown proportionality constant be-
tween the amplitudes and the initial phase difference is determined
from a comparison with the results of well-known solutions of diffrac-
tion problems. In this way, the fields scattered with the normal
incidence  of a plane wave onaslit and hole in a flat screen are
found. These fields are obtained with consideration of multiple dif-
fractions, but they are not precise wave equation solutions, since
thelr calculation was started from approximation relations. Moreover,
geometric diffraction theory is not applicable near caustics, and alsc
in the vicinity of the scattering diagram principal maximum.

In a recently published paper of Buchal and Keller [52], a new
method for the solution of diffraction problems for holes in a flat
screen was proposed. The caustics and shadow boundaries here are in-
vestigated as thin boundary layers, inside of which a rapid field-
change takes place. This method supplements geometric diffraction
theory, and in particular enables one to find the field at caustics

and on the shadow boundary.

Recently, the method of 1ntegral equations has been applied to
the solution of diffraction problems of holes in a flat screen. In
particular, Greenberg [53, 54] reduced the solution of this problem

H



to an integral equation for a "shadow" current which is, in our termi-
nology, half the nonuniform part of the current. The resulting
integral equations may be solved (with any ratio between the dimension:
of the hole and the wavelength) by the method of successive approxi-
mations. Moreover, they allow one to obtain asymptotic expressions
which are suitable for short waves. In Reference [55] Greenberg found
an asymptotic expression for the current on a strip with ka >> 1 (2a
is the strip's width). Greenberg and Pimenov [56] obtained a similar
solution in the case of normal incidence of a plane wave on a circular
hole. Using the same method, an asymptotic expression was found for
the current on a flat ring [57], the width and inner diameter of which
are a great deal larger than the wavelength.

The above listed works [53 - 57] already relate to the mathemati-
cal theory of diffraction: in them the first terms of the asymptotic
expansions for the current were obtained with the desire evidently to
also be able to calculaté the following terms. Unfortunately, the
asymptotic eipressions which have been found up to now refer only to
currents, and one is ohliged to calculate the scattering characteris-
tics by means of numerical quadratures [56]. As a consequence of the
rapid oscillation of the integrands, such a method leads to rather
unwieldy calculations and does not enable one to formulate a clear
rcpresentation of the fringing field formation, and also does not
&llow one to study this field properly.

Millar [58] investigated the problems of electromagnetic wave
diffraction by slits in a flat screen. The system of integral equa-
tions obtained by him for the current is solved by the method of
successive approximations. The field in the hole 1is calculaféd~¥£be\
the currents which are found, and then on the basis of the field in
the hole the field in the far zone and the transmission coefficilent
are calculated. All the 1ndicated - antities are represented in the
form of an asymptotic expansion in reciprocal powers of the parameter
vka. A solution also is obtained in the case of glancing incidence

of a plane wave.



Let us note that the asymptotic expressions obtained by the
method of integral equations are distinguished by their considerable
complexity, and frequently require tabulation of the new specilal
functions appearing in the expressions. ”

In the recently issued volume of Handb'.ch der Physik [50], which
1s devcted to diffraction theory, the complex characteristic of plane
wave scattering by a strip was studied directly, omitting the calcu-
lation of the currents. For this characteristic, a singular integral
equation was formulated, the solution of which was sought in the form
of an asymptotic series in reciprocal powers of vYka. The first term
of the series corresponds to Equations (6.14) and (6.16). The follow-
ing term takes into account the interaction of the edges, and becomes
infinite with the glancing incidence of a plane wave and also for
observation points lying in the strip's plane. Therefore, the simple
expressions obtained in [50] do not allow one to construct the com-
plete scattering characteristic. 1In [50] diffraction by a disk, a
sphere, and an infiniﬁe circular cylinder was investigated, and also
a review of the general methods of diffraction theory and a biblio-
graphy encompassing a large number of works (mainly German and

American) were given.

The book of King and Yu[59] presented (as a rule without deriva-
tion) a series of asymptotic expressions relating to a slit and a
circular hole and also to other diffraction objects. Here, however,
equations from which one would be able to construct the scattering
characteristics of a strip and a disk with any incidence of a plane

wave also are missing.

Works on diffraction by three-dimensional bodies having edges
are comparatively scarce. In the paper of Siegel et al. [41], the
aeffective scattering surface for a finite cone with the incidence of
a plane wave on 1t along the symmetry axis is calculated from elemen-
tary arguments. The expressions obtained here do not fully character-
ize the fringing field, and are sulitable only ior sharp cones to whict
we already referred in § 17. In the papers of Keller [447, the



diffraction ray concept is used for calculating the scattering of
scalar and electromagnetic plane waves by a finite circular cone with
a flat base and also by a cone having a spherical rounding off instead
of a flat base. The resulting expressions are not applicable in the
vicinlity of certain irradiation and observation directions. In § 17
we showed that the field scattered by a cone and by certain bodies of
rotation 1s not expressed only in terms of the functions f and g,
which refer to diffraction rays diverging from a wedge edge. Thils
result evidently attests to the lmpossibility of complete calculation
of the scattering characteristic with the diffraction ray concept.

Diffraction problems arising in antenna theory are usually dis-
tingulshed by thelr great complexity, since the corresponding metal
bodies (mirror, horn, etc.) have a co »nlicated shape. Since the dimer
sions of these bodies and the dimensions of the radiating apertures
are considerably larger than the wavelength, the application of
physical diffraction theory to antenna problems 1s very promising.
only the first steps have been taken in this direction. Thus, Kinber
[60, 61] performed a calculation of the decoupling and lateral radia-
tion of mirror antennas. The feature specific to mirror antennas is
that diffraction rays arising at the mirror's edge undergo multiple
reflection on its concave surface. This multiple reflection was
studied by Kinber in more detaill as applied to the concave surface of

a cylinder and sphere [62, 63].

Diffraction problems relating to an antenna dipolé -— a thin
cylindrical conductor — are investigated in Chapter VII, and
references to the literature are also given there.

In conclusion, let us say a few words about diffraction of short
waves by smooth bodies. The basic principles relating to such pro-
blems were set forth in the fundamental works of Fok and Leontovich.
These principles were established by the following methods of
mathematical diffraction theory:



1. By the method of an integral equation for the current on
the surface of a good conducting body (the local character of the
field in the half-shade region, see [171]);

2. By the method of asymptomtic summing of diffraction series
(the current on a paraboloid [64, 65]; the propagation of radio wave:

above the spherical Earth [18, 66]);

3. By the parabolic equation method (the propagation of radio
waves above the flat [67] and spherical [68, 69] Earth; the field of
a plane electromagnetic wave in the half-shade region for any convex

body [701).

Keller [U42], basing his work on the diffraction ray concept,
obtained an expression for the field in a deep shadow with diffracti
by a convex cylinder with a variable curvature. In the particular
cases of an elllptic and a parabolic cylinder, as was shown in the
works of Vaynshteyn and Fedorov [71] and of Ivanov [35], Keller's
equations agree with the results of the more rigorous mathematic in-
vestigation. This allows one to more precisely study (see [71]) the
conversion of diffraction rays to ordinary rays and vice versa.

The parabolic equation method described in so-called ray coor-
dinates 1s a more general approach to diffraction by convex bodies.
This method allows one to obtain a general expression for the Green
function in the case of a circular cylinder [72, 73]. Evidently
this method can subsequently be successfully applied also to other
cases, among them three-dimensional diffraction problems. )



FOOTNOTES

Footnote (1) on page 138. These calculations were performed
under the guldance of P. S. Mikazan

Footnote (2) on page 150. See the footnote on page 86.



CHAPTER VI

CERTAIN PHENOMENA CONNECTED WITH THE NONUNIFORM
PART OF THE SURFACE CURRENT

In the previous chapters, a theoretical investigation was
conducted of the field radiated by the nonuniform part of the current.
In this chapter we will discuss a method for measuring this field
(§ 26) and we will investigate the phenomenon of the reflected

signal's depolarization (§ 27).

An experimental method for measuring the field from the nonuni-
form part of the current was first proposed for bodies of rotation in
the paper of Ye. N. Mayzel's and the author [12]. Later it was shown
that this method has a universal character, and is suitable for
measuring the field from the nonuniform part of the current excited by

a plane wave on any metal body [13].

§ 26. Measurement of the Field Radiated by the
" Nonuniform Part of the Current

Let an ideally conducting body of arbitrary shape be found in
free space. A surface element of this body is shown in Figure 69.
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The coordinate system was selected in such a way that its origin would
lie near the body, and the source Q would be located in the plane

X = 0. If the distance between the body and the source 1is a great
deal larger than the body's dimensions, then the incident wave in the
vicinity of the body may be investigated as a plane wave. Let us
represent 1t in the form

Ey=E,*Trtcn g, (26.01)

Here y 1s the angle between the normal N to the wave front and the

Z axis.

Now let us place in front of the source, parallel to the radiated
wave front, a polarizer P which transformed linear polarized radiation
into a circularly polarized wave. Let the wave passing through the
polarizer with an electric vector En lag in phase by 90° behind the
wave with an electric .vector E. (Figure 70). 1In this case, the polar-
lzer achieveé a clockwise rotation(l). As a result, the incident

wave fleld at the coordinate origin will equal

= - =
l—i- ~—l~;~

Ey= Ey, Ho="—E,,. (26.02)

Vf‘ V2

The field scattered by the body may be represented in the wave
zone in the following way:

ikR

E "-—-H m:aE,, e 2( ?)...._.

.....;....

. — ;aE., ,
Ey=t,=

IhR

(26.03)

where a 1s a certain length characterizing the body'sl size and L(9,9)
and Z(3,p) are unknown angular functions. In the general case, the

éljFQthcts appears on page 174,



field (26.03) is an elliptically

polarized wave. In the direction
{S e
toward the source { =, g }
this wave passes through the
polarizer and creates behind it
. the field
) iak,, e AR i‘i:i'
Ex:‘—':“*“st 20 + R [ '
iaE,, e'kR
' ) E&mﬂxm 2° R
Figure 69. The problem of elec-
tromagentic wave diffraction by (26.04)
an arbitrary metal body.
dS - is a surface element of the
where
body.
N - the normal to the incident
wave front, :
Q@ - the source, Vo b ”\“‘—%ﬁ;).
P - the polarizer converting ~y 2l (26.05)

linearly polarized ‘radia-
tion to a wave with
circular polarization. If the source radiates a

wave of another polarization
. (H, | yoz), then the wave reflected
€z 7 by tne body and passing through
€& 14 the polarizer is described at the
point Q by similar relationships

45°
-
Ep
uzh'nz ekR i_’ :
| HomEy= e W) 5T
Figure 70. o F _,hﬁu Eff
8= T Fx—T T L) R °

(26.06)

Now let us investigate in the physical optics approach the

diffraction of a plane linearly polarized wave by the same body.
According to definition (3.01), the uniform part of the current exci-
ted on the body's surface by a plane wave with E-polarization of the

incident wave (EO | yoz) equals
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and with H-polarization {HO | yoz)
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Here on and Hox are the electric and magnetic field amplitudes of

the incident wave with E-polarization and H-polarization, respectively
¢==k(ysini--zconv; is the incident wave phase at the point (x', y', z')
are the components of the normal

on the tody's surface; N, n n

y) Z)
to the surface at the same point.

Furthe.more, calculating the vector potential in the far zone
on the basis of this current and substituting its values into the

equations

ki

E" T e H{’ zil[.‘\q, }

EaxzfgzdkAw (26.09)
we find the fringing field. With E-polarization, it equals
" iR R
E =—H = ;f—”- Eqs -%——-S[nlsin cos e
4~0ush1f~%rucosy)dn?]€¢d§, (26.10)
1, kR
Ey=H, = -,5-}-”— on-‘ik“- Y[nx(sin 7cos }sing — cosysind) —

o - (26.10)

« (D ~
— (n, sit1{ == 1, cos ) cos g cos ] e dS,

and with H-polarization
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ik e*R . . io k :
EszH?z-ﬁHO,TJ(nysan—}-n,sm?cos&)e as. (26.11)

Here R, 8 , ¢ are the spherical coordinates of the observation point,
¢==¢-k§¢mﬂ) , and integration is carried out over the illuminated
elementéfof the body's surface. In the case of radar when the obser-
vation;ﬁnd irradiation directions coincide (8z=““”7’?==*”%%) s
Equatitns (26.10) and (26.11) yield

+

. _ ik " efRR .
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+n.cosy)e®ds, (26.12
Eg=H,=0 \
and .

: ik eltR .
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-+ n, cos y) e** dS,
26.1°
E;=H,=0. ' : J (26.1:

L d

Furthermore, assuming the incident wave amplitudes are specified by
Equation (26.02), let us write Expressions (26.12) and (26.13) in t-

following way:

i
-
— __iaE,, e ¥R
E;-—'— Haw 5 _Vi)_. R E.’
|
; T ik |
E. —H _cfaE.. e L
e M= 2 y7 R ; (26514)
where
z:omM§a$§£§<gﬁsig1+n,cesy)ef@ds. (26.15)

Now let us represent the angular functions of fringing fleld

(26.,03) in the form
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where the functions ZO, fo and El, fl refer to the fleld radiated by
the uniform and nonuniform part of the current, respectively. Substi-
tuting these expressions into Equations (26.04) and (26.06) and taking
intn account relationship (26.15), let us find the fringing fileld

passing through the polarizer P toward the source Q. In the case of

E-polarization, it equals

, .= )
. ial,, Gy, eRR iF
Ex=—Hy= " xs +.\.')»~.ﬁ-e :
E --H - f”on (2\‘ vi __Mi::!) Cil‘:p , (26.17)

and in the case «f H-polarization

' H “"'E laHo\*(§x ‘}—L!) Meif:

(26.18)
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The physical meaning of the result obtained is as follows. The
field scattered by the body at the point Q is the sum of two waves
polarized in mutually perpendicular directions. The reflected wave
which is polarized the same as the primary radiation of the source is
determined by the function 2+==€r(yly§5 , and 1is created only by the
nonuniform part of the current . The reflected wave with the perpendi-
cular polarization is described by the function %.=2¥4I'—X'  ang
is the fleld radiated by both parts of the current. Let us note that
in the general case the furictions Zl and fl do not coincide, and -

- therefore they are not balanced out in the expressions for I_. In
other words, the field radiated by the uniform part of the current in

this case may not be separated from the fringing field.

Thus, the investigated method allows one to separate from the
hat par!

(the

ot

total fileld scattered by any metal body of finite dimensions

[

of the field which 1s caused by a distortion of the surfac



curvature, a sharp bend, a point, a bulge, a hole, etc.). One should

note that, in the case of electromagnetic wave scattering by a system
of separate bodies, the separable part of the field is due not only
to the surface's distortion, but also to the diffraction interaction

of the bodies.

It is necessary, however, to keep in mind that it is possible to
realize the indicated fringing field distribution not in an arbitrary
observation direction, but only in a direction for which the condition
50 = 30 is fulfilled — for example, in the direction towards the

source.

Consideration of the nonuniform part of the current also enables
one to explain the reflected wave depolarization which we will inves-

tigate in the following section.

Figure 71 presents the results of measurements<2) and calculation

of the effective scattering surface

a* =0t Y, [P na® BT (26.19)

which is dependent upon the nonuniform part of the current excited by
a p;ane electromagnetic wave on a disk. The disk's diameter equals
2a:=%§ (A is the wavelength). The calculations were performed with
consideration of the secondary diffraction on the basis of the approxi
mation equations for the functions £ and ¥ which were derived in § 24,
Since it 1is difficult to prepare a thin disk with a sufficiently flat
surface, the measurements were performed with an obtuse cone close to
the shape of a disk and having a height approximatzly equal to one
tenth of the diameter.

As is seen from Figure 71, the theoretical and experimental curve
are falrly close together. A certain divergence between them,
especially in the region of y values close to 90°, may evidently be
explained both by the model's conical shape and also by the

3 -
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Figure 71. Diagram of the radiation from

the nonuniform part of the current flowing
on a disk.

approximation character of the computational equations. The value
y = 90° corresponds to the direction along the disk's surface, and
the value y = 0° — to the direction normal to the disk.

§ 27. Reflected Wave Depolarization

Let us again return to the prcblem of scattering of an electro-
magnetic wave by an arbitrary metal body. The relative position of
the source Q, of a surface element of the irradiated body, and of the

coordinate system 1is shown in Filgure 69. Let us recall that the



source Q is in the plane y0z, and

o radiates a linearly polarized wav:
Furthermore, we shall assume that

the polarizer P which is shown in

A Figure 69 is now absent.

&z

where

Let us designate by a the
angle between the plane yOz and
the incident wave electric vector
E. (Figure 72). The field of

Figure 72.

0
this wave will be represented in
the form
Er=H, = E,e™Wsnitzcs
X -“““' ox 9
H ,____“____E _H eiktysina+zcosﬂ (27-0,1)
x - OT‘*" [1% 4 ’
E,. = E,sina. fﬁx::-Eoumz,g§:;tga. (27.02)

The field scattered by the body is determined in the wave zone

by the equations

E,=—H,= 5 |EE (1, %.9)+

kR
R A4

e

+ HoxZ, (1, D, 9)]

EQSH?:—: ‘%z“onxgz(Y- '-” ‘?)+

elkl?

i

+ Hy:Z, (1, %, 9)]
(27.03)

Here a is a certain length characterizing the body's dimensions, R,

4, ¢ are the spherical coordinates of the

2

observation point,

L. %9 and % ,(1, 8 9) are unknown angular functions.
& N
it is obvious that the fringing fileld polarization — that 1is,
the orientation of 1ts electric vector in space — depends in a com-
plex way on the observation and irradiation directions. In the



direction toward the source, it may not coincide with the polarization
of the wave radiated by the source. Such a phenomenon 1s called

reflected wave depolarization.

It is easy to establish the reason for depolarization, 1if one
investigates the fringing field as the sum of the fields radiated by
the uniform and nonuniform parts of the current. According to § 26,
the uniform part of the current radiates the following field in the

direction towards the source (3ﬁ=¢*"7,?:2-%;)
iaE,, R =
Ex::«—-Hsm D) —-—-R-- 20’ ‘
| iaH.: €e*R 0 [
E,,:::H?: 7 TR~ (27.04)
T =0 0 ‘s 0 =0
he functions ¥~ and ¥  satisfy the condition £~ = -X , and are de-

scribed by Equation (26.15). From Equation (27.04), let us immediatel
obtain the equality

E

E, — 8% (27.05)

which means that in the physical optics approach the reflected wave
does not experience depolarization. Consequently, the reflected wave
depolarization is caused only by the nonuniform part of the current

or, in other words, by the surface distortion.

Let us derive an equation for the magnitude of angle §. This is
the angle by which the electric field vector of the reflected wave is
turned in respect to the electric vector c¢i ‘he wave radiated by the
source. For this purpose, let us represent the functions f1(2) and

in the form
21(2)

3 =1

“”ﬂ““sz+ “uar ‘

e {2} x“:{ﬂ + alay? { <$2?" 06 )
. , ) @ g . . . V
where the terms 1<2) and 5152} correspond to the field radiated by

e
, . N , =1 1
the uniform part of the current, and the terms 27(2> and Zj(gi
L AL /



correspond to the fileld radiated by the nonuniform part of the current
Comparing Expressions (27.04) and (27.03), we find that

w0 Py 0
¥ =13, X' =0, ]

£=0 H=—75 (27.07)

“2“‘“‘

Therefore, the fileld scattered in the direction towards the

source (93:«~»% ?zzm»%}),will equal
Ey=—Hy= 2 [E, £+ )+ H,2]
s=— Hy= B (B 5 H,.5 S
V i - e iRR
Ey=Hy= | E,uS) — Mo (B — X)) S I (27.08)

This field's electric vector forms an angle B with the yoz plane.
The angle B 1s determined by the equation

_E._P+E—7ctga
8= =S e, € (27.09)

As a result, the desired angle § which characterizes the depolarizatic

magnitude will equal

62“—T—p. (27'10)

Thus, the field from the nonuniform part of the current, separabl
"in a pure form" by means of ¢ polarizer (§ 26), leads to depolarizat:

of the scattered radiation.

Specific results from the depolarization calculation of waves
reflected from certain bodies may be found, for example, in the works
of Chytil [75 - 77] and Beckmann [78]. In particular, in Reference [’
it was shown that the depolarization effect on the effective scatter-
ing surface of convex bodies im practice may be neglected only with

e

the condition ka > 4.



FOOTNOTES

Footnote (1) on page 164. A system of metal plates parallel
. ‘ to the e, vector may serve as the

simplest example of such a
polarizer.

Footnote (2) on page 169. .. See the footnote on page 86.
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CHAPTER VII

DIFFRACTION BY A THIN CYLINDRICAL CONDUCTOR

Tn almost all the works devoted uv the diffraction of plane
eleétromagnétic waves by a thin cylindrical conductor, the current in-
duced in the conductor was studied, and then, by integrating this
current, the fringing field in the far zone was calculated. However,
in view of the complexity of this problem, they succeeded 1in obtain-
ing relatively simple equations only in the particular case when the
observation direction and the direction toward the source coincided,
and was perpendicular to the conductor axis. In the general case
when these directions did not coincide and were arbitrary, the expres-
sions for the fringing field became véry complicated and unsuitable
for making calculations. Since they were obtained by integrating
approximation expressions for the current, it turns out that they have
still one other shortcoming — they do not satisfy the principle of

duality.

In this chapter, explicit expressions are obtained for the
fringing fileld which are suitable for making calculations with any
direction of irradiation and observation. We shall consider both the
primary edge waves excited by the incident plane wave and also the

secondary, tertiary, ete., edge waves. The total fringing field 1is

founid by summing all the diffraction waves.

175
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§ 28. Current Waves in an Ideally Conducting Vibrator

The electrodynamic problem of determining the current in thin
cylindrical conductors (vibrator) usually is reduced to an integro-
differential equation. The latter is derived by means of boundary
conditions on the conductor surface, and is substantially simplified

in the case of thin conductors when the inequalities
T <1 and ka <1, (28.01)

are fulfilled, where a is the radius and L is the length of the

2n «w

conductor and kxpr. - -

Its solution may be found, for example, by the method of succes-
sive approximations [79, 80] or by the perturbation method [85].
Recently, Vaynshteyn [81, 82] proposed a new solution for this equatic
Since we will subsequently base our work on the results of References
[81, 82], let us discuss them in more detail.

Let us assume that the vibrator's symmetry axis coincides with

the z axis, and its ends have the coordinates z = Zq and z = Zy
(L = Zy = zl). In the case of excitation of the dipole by a concen-

trated external field

E; =8i(2) (28.02)

the current J(z) in the conductor may obviously be written in the forr
of the sum of the waves travelling along the conductor with a velocit:
¢ from the excitation point 2z = 0 and the ends z = Zq and z = Z o " In
Reference [81] it was shown that the complex amplitudes of these wave:
are slowly varying functions of the z coordinate. These functions
may be approximately expressed in terms of the function ¥(z), so that
we obtain the following expression for the current J(z):
JEy=J[p(z)e™ ¥ "L A ¢z —2z,)e* 4

+ A, ¢ (2, —2) 977, (28.03)



Here the quantity

c8

jom ,“{‘«:—-“1.781... (28.0&)

4ln Tha

determines the initial value of the current wave propagated from the
excitatilon point(l). The function Y(z) is the solution of the inte-
gral equation, and in addition to the variable z it also depends on
the parameters k and a. We will not 1list here all the properties of
the function Y(z), but let us note only that it satisfies the

conditions
2(0)=1, $(c0)=0, (28.05)

and its absolute value monotonically decreases with an increase of z.
This decrease, which is rather slow and does not have an exponential
character, is due to radiation.

The constants Al and A2 determine the initial values of the
current waves originating at the points z = Zq and z = Z5 s respective:
and travelling in the direction towards the opposite end of the
conductor. These constants wre found from the conditions at the

ccenductor ends

Hz)=J(z,) =0 (28.06)
and equal
A= I3 2) — bz p(Lye™ e ™, }
' ~Dikzyy k2 (28‘07)
A= o [(2) — $(— 2§ (L) e "™,
where
D==1--9*(L) ™" (28.08)




Considering that the quantity 1/D is equal to the infinite geo-

metric progression,

=1L et (28.09)

Expression (28.03) may be written in the expanded form

—iRZ, ‘ :k{z~z,)___‘

J@)=Jo{p(z)e™' ¥ — v (—z) e ™ [p(z—z,) e
— (L) (2, —2) Mg g (L) e g (2 —
- 2‘) el!z(zuz.) — )= ) (2,) eik, [? (2, —2) eik(:.wz)m
— (L)eihl. $(z . 2,) e&‘l(z-m+
49 (L) ey (z, —z) e )} (28.10)

The physical meaning of Expression (28.03) is seen from this. The

first term in Equation (28.10) is the primary current wave which coin-
cides with the wave excited by a concentrated emf in an infinitely
long conductor. The second term (in all brackets) corresponds to the

current resulting from the reflection of the primary current wave

from the conductor end z = 215 and as a result of subsequent reflec-

tions from the conductor ends which arise from this wave
— LW (—z)e " (z— 2,) ™" | The third term (in all brackets) corre-

sponds to the current resulting from the reflection of the primary

Z5 and as a result of the subsequent reflection:

wave from the end z =
Z) e‘k(za““&)

from the conductor ends arising from th.'s wave — /¥ (2)e™™ (2, -

It also follows from Equation (28.03) that external field (28.02

excites in the semi-infinite conductor (2i<2<20) the current

A ik ~ ik 2 N
Hey=Alplz)e™ ¥l —u(—z)e *u(z —z) ™ 2y, (28.11)
and in the semi-infinite conductor (—oc<z<2z,) the current
i% ‘Bz, 1B ig,—
J(zy=J [y (z e T —d (2,00 (z, — z) 1), (28.12)
Comparing these expressions with the proper terms in (28.10), we see
that the reflection of all the current waves at the end of a finite



length vibrator occurs in the same way as at the end of a semi-infinite

conductor.

In the case of a passive vibrator (z,<z<z,), excited by the plane

wave

ES = Eqe™”, w=—kcos?, (28.13)

the current also is represented in the form of the sum of waves (see
rga1)

....

— (2, —2) e “"“"+A ble—z)ct Tt

14, $(z, —2) e"“”’“"] (28.14)

where the first term corresponds to the current excited by a plane
wave in an infinitely long conductor. Its complex amplitude S equals

inE,,

S:a: 2 2 ’
2%sin Mnm . (28.15)

The second and third terms are primary edge waves arising as a conse-
quence of the cut-off of the current Seiwz. They are expressed in

terms of the functions ¢ + (z) and ¢ - (z) which depend, in addition
to the variable z and the parameters k and a, on the angle 8 . These

functions satisfy the relationships

9. 0)=1, b, (0)=0,
by @)y =14 @) se=1(2) -
b, ()] gmo= - (2] =1 (28.16)

The initiai values of the primary edge waves are such that theilr sum
iwz

with the wave Se gives a current equal to zero at the conductor

ends

The last two terms in Equation (28.14) correspond to secondary,
toartiarv. etce.. edge waves, and have the same form as they do for a



transmitting vibrator [compare Equation (28.03)]. The unknown coeffi-

cients Kl and Kz are found from Conditions (28.06) and equal

-

A= D
—_— (L) ?(L) el(k—w(:‘)l.} ewlkzt,

i(k%‘w)zg[{ (L) s

-

A= e T (L) —
— 9, (L)O(L)e'*FeMtyetha (28.17)

Using equality (28.09), Expression (28.14) may be written in the more

graphic form
]

J(Z) ms{eiwz___. q)‘ (Z . Z,} eiw:,+ik(z~z,)+
+ ":J.. (L) eiw2,+lkL [‘«? (z, . Z) eik{;’,wz)w
= (L)t (z —z;) €L
F 97 (L) ey (2, —z) ™ ]
=z —g)errera g
+?+ (L) et:zfz’,'{-lkl, {? (Z — ) eik(z Z,)
—§ (L) g (2, —2) Moy
03 ARL ik (2~2,)
+ (L)e p(z —2,)e -k (28.18)

Here besides the wave Se "% and the primary edge waves, which we
talked about in connection with Equation (28.14), the secondary, ter-

tiary, etec. waves diverging from the ends z = 49 and z = z, are
explicitly written out; they correspond to the first, second, etc.

terms in the graphs.

+ o, we find

Passing to the limit in Equation (28.14) when Z
the current in the semi-infinite conductor (zl, o )

J(@) =S [ein —y_(z —z,) R ER] (28.19)

and, similarly, we find the current in the semi-infinite conductor
éwwg zg)

J(z)=S-[eivr — 4, (z, —z) e@rEEIL (28.20)



It is not difficult to see that in the case of a passive vibrator
the reflection of current waves at its ends occurs in the same way as

at the end of a semi-infinite conductor.

Thus, the complex amplitudes of current waves in a thin, finite
length conductor are proportional to the functions ¢(z) and wi(z)
which monotonically decrease with an increase of z as a consequence
of radiation. Let us note several properties of current waves in a
vibrator. FEach advancing wave in sum with the reflected wave excited
by it gives a zero current at the conductor's end. In the case
15323““%f3ﬂ*%%ﬂ==lﬁl3~-3 and D ¥ 0, a current resonance begins in

the vibrator.

The precision of Expressions (28.03) and (28.14) obtained by the
method of slowly varying functions 1is different in various sections
of the conductor. It 1s comparatively low near the conductor's ends
(and in the vicinity of the point z 0 of a transmitting vibrator)
where the current wavés arise, and where their complex amplitude varie
rather rapidly. As the distance from these vibrator elements increase

it

the precision of these equations increases without limit.

It should be stated that with a more rigorous approach [79, 90]
the amplitudes of all the reflected waves will be determined by dif-
ferent functions; however, the difference between them rapidly decreas
with an increase of the reflection number. The functions ¢(z) and
wi(z) only approximately describe these current waves, but on the othe
hand they allow one to effectively; sum them and to obtain closed

equations.

Using the variational method for the functions y(z) and ¥ _(z),
we obtained the approximate, but on the other hand, simple equations
(see [831)

1
vy

4 —
#z) = g —
in “‘:{w —E{lgxije-3igs

(28.21)

(Equation continued on next page)



—

— 1

1",

In

nO - ECane ] (28.21)
where
In(—1)y=ir, lni=i3, (28.22)
x=% g=(hay, g,=¢ T2 (28.23)
and
E(y)“uy—}—w!ym*—-ji'-dt (28.21)

The integral cosine Ci y and the integral sine si y are determined by

the relationships

B cost ) T sint
“T‘S“T“dt my==-j —dt (28.25)
; v

and are thoroughly tabulated functions.

The equations writcen above for the current in a finite conductor

are distinguishable by their visualizability, and they ~nable one

to liken the conductor to a section of a transmission line in which,

however-, the attenuation of the current waves talres piac=, not accord-

ing to an exponential law, but according to a more complicated law
In addition, vhe diffraction

The conductor's

which is determined by Equations (28.21).
character of the problem is reflected in the equations.
specific features as a diffraction object are included iu the very
slow attenuation of the current waves. As a consequence of this, it
is impossible to 1limit oneself to considering only seccndary and
tertiary diffractions, and 1t is necessary to sum all the reflected
waves. As a result of such a summation, a "rescnance denominator”

D appears which takes into account the resonance propertizs of a

thin, finite length conductor.
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§ 29. Radiation of a Transmitting Vibrator

The radiation characteristic of a transmitting vibrator may be
calculated from a known equation by integrating the currents in 1it.
However, su . an approach is not advisable because, as was indicated
above, the precision of Equations (28.03) is different in different
parts of the conductor, and is low near its ends (z = Z4 and z = zg)
and the point z = 0. The principle of duality glves more precise
results. This principle leads to the following expression for the
radiation field in the far zone [82]:

& eih R

Es:Hq;: b1 R -[(9),
2sinoln-~~—~—-—--—-——-,ﬂmsmﬂ 4
l:“x;:::ffs:()f~ ' (29.01)

The funection

[(3):: 1 — ?4_ (Z:) eik:.(l~cos 8)___4)- (_ Z‘) e—u’k:. {1 $cos 0)+

_.%__ Bl‘{e-" (L) e”fzgﬂ -—cos §) + B,q’_ (L) e-«'kz, (14cos 8} (29’02) (29 .02 )

is connected with the current (28.14) excited in a vibrator by plane
wave (28.13) by the relationship

J(0) == Sf (9), (29.03)

The coefficlents Bl and B2 do not depend on the angle © .

Expression (29.02) enables one to trace the formation of the
radiation. The first term (one) is the radiation field of an infinitely
long conductor excited by a concentrated emf. Propagating in the
direction 9 = 0, this field reaches the conductor's end z = Z5 and
— being diffracted by it — generates a primary edge wave (the second
term). In a similar way, the primary edge wave diverging from the
conductor's end z = Z4 is excited (the third term). The last two terms
in Equation (29.02) determine the waves arising as a result of subse-
quent diffraction (secondary, tertiary, etc.). The amplitudes Bl and

B, or these waves may be found from the conditions
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J(9)={(s)==0, (29.04)

which means that the radiation of a finite conductor in the direction
of 1ts geometric extension must be equal to zero. These conditions,
together with a consideration of the relationships (28.05) and (28.16),

lead to the system of equations.

B, -+ Bsy(L)e” “‘kz‘.»-»)(wz)e 2ikzy }
1?([;)(‘}‘?1331*{”81‘::?(23) e?:kz,’ (29'05)
from which we find without difficulty
L ke ~2ikZ, )
Blm“[j'tt}( 1)“‘{' L}J(z )e 1}8 ' t
! ikz 12,
Bi=prlite) =¥ (D p(—zpe e, | (59.06)

Keeping in mind (28.09), let us represent the functions f( %) in a

more graphic form

[®)=1—19,(z,) gatt cosd) + (2, o'* (L4 %
X[ (L™ gLyt g, (Lye et 4
et (L) ey (Lye s )
—__ (“Z:) e«ikz, (T +ens 6)‘% " (— ) eiku,-zt) X
S [hs (L) et d — (L) et 5_(Lye —-ikz, cos o+
“f"'f’(L)e'kL b, (L) e~ itz cos B Y (29.07)

where the secondary, tertiary, etc. waves corresponding to the first,
second, and following terms in the brackets are explicitly written

out.

Thus, the field radiated by a transmitting vibrator arises as a ~
result of multiple diffraction of edge waves at the vibrator's ends.
Let us note in connection with this that the edge wave 1s diffracted

by the opposite end of the vibrator in the same way as at the end of



a corresponding semi-infinite conductor. It 1s not difficult to
establish this by investigating the radiation of a semi-infinite

conductor excited by a concentrated emf.

Ve
§ 30. Primary and Secondary Diffraction by a

Passive Vibrator

Let a plane electromagnetic wave fall at an angle & on a thin
cylindrical conductor of length L = Zo = Zq and radius a (Figure 73).
For purposes of generality, we will consider that the incident wave's
electric field EO forms an angle a with the plane of the figure.
Then, 1ts tangential component on the conductor suvrface will equal

E;cgoz‘e:w.z, (30'01)

where

E,,=FEsin%, E=EFE,cosa, w,=— FkCcosb,. (30.02)
The current induced in the vibrator by this field was investigated
by us in § 28. As was already indicated above, Expression (28.14)
which was obtained for it has a relatively low precision near the con-
ductor ends. Therefore, it 1s inadvisable to seek the fringing field
by integration of the current. Let us also note that the fringing
field found by such a method does not satisfy the principle of duality.

We shall seek the scattering characteristic of a passive vibrator
by starting from the following scattering picture which naturally
follows from the previous results. An incldent plane wave, being dif-
fracted at the conductor ends, excites primary edge waves which are .
radiated into the surrounding space. Being propagated along the con-
ductor, each of these waves experiences diffraction at the opposite
end of the conductor and excites secondary edge waves. The latter,
in turn, generate tertilary edge waves, ete. The total fringing fleld
is comprised of the sum of all the edge waves being formed during
sequential (multiple) diffraction at the conductor's ends.



In § 28 and 29, we noted that current waves are reflected from
the ends of a finite length conductor the same as from the end of a
semi-infinite conductor, and that the diffraction of these waves at
each end takes place in the same way as at the end of a semi-infinite
conductor. Therefore, the primary edge waves may be found from the
problem of scattering of a plane wave by the semi-infinite conductor
(zl, =) and the conductor (-, 22). The sum of such waves gives the

primary diffraction field

ED = H“‘;MP»_W.F‘”({), Do), (30.03)
where
", »g*“
S :
i cte 2 dg ik icus Dpcos By) ——
TTT feus - cos ) P(—E cos #, — &k cos )
P,
) ety e ke {cus & + cos By
"7 73 (cos 0 F cos B,) D (k cos B, kcos By) ' (30.04)
b The function ®(w, w, may be
‘ ~7 calculated by means of the rigor-
2 % 2z . ous solution to the problem of a
- L - semi-infinite vibrator (see [82]
§ 3 and [83] § 4), and in this
case, 1t satisfies the relation-
Figure 73. The incidence of a ship

plane wave on a thin cylindrical
conductor; % 1is the incident
angle.

(wd (0.4

D (w, ) P(~ w, —wy) = In ~—~1n——-— ]
ve=y/ B — 0w, o=} k’—-—-w,,. ‘ (30.05)
However, henceforth it will not be necessary to have the rigorous
expression for the function ¢. Let us note that Equations (30.03)
and (30.04) are similar to Expressions (6.13) for a strip. These
latter expressions do not take into account secondary diffraction.



The secondary edge wave propagated from the end z = Zn is ex=-
cited during diffraction at this end of the primary current wave

— S (z —z )T EmA) (30.06)
where by wg(z) we mean the functions obtained from the functions wi(z)
by replacigg 9 by %, . For the purpose of calculating the desired
secondary waves, 1t is necessary for us, first of all, to find that
external field which, when applied to an infinite conductor
(—o=<z=-ioc), would excite the current (20.06) on its section (2,<z<0o0).

For this purpose, let us study the current induced 1n an infinite

conductor by the external field

lwith z< 2,

- r iwg2 . > < ....~ B~
Ef=E,e™ s(z—2z) <(z ZJ‘M{Owithz:>2r (30.07)

Let us assume that Wy has a small negative imaginary part (Im wy < Q).

(=

We may regard the quantity éue ‘¢ as a concentrated emf which, in

accordance with equation (28.03), creates in an infinite conductor

Ca%'?ﬁZMCH&““"Pﬂﬁ

Hnm

(30.08)

Therefore, in accordance with the principle of superposition, the
total current created in the region 2, <z<oec Dby the external field
(30.07) will equal

4
-~ <y

¢ i@yt ik (22
I(z) = CE%__S‘_TJ(ZMC)GM.«I»H: 4l ==

i 2,
o =
— CEC!i e“wiz . 5‘ t}) (E) e‘.('t”‘:'ofs dg‘
4In,?'k*;* = ‘ (,3009)

The resulting integral may be expressed in terms of the functions
0 . R .
Y(z - z.) and ¢ (z - z.), and the corresponding relationships derived

in § 2 of [82]. As a result, we find

'NWJ
o
~3



E, e . —
J (@)= ——t5 - pla — )TN

; t Ik T PR
8ik S!n) 2 1a Ta

cE, el ' - ’
= ez,

- i

Sik sl la

ﬂ?an%? o (30.10)

Thus, it turns out that external field (30.07) excites, in
addition to the wave wﬁ, also the wave ¢. In order to excite a "pure"
wﬁ wave, 1t 1s necessary obvicusly to apply an additional external

field

E;mé’la(z“‘“zx)- ’ (30'11)
such that
cE, el i
G Y —z) et
81k§xn’~2-lnﬁ
By a—z) e o,
4ln;;5‘ (30.12)
Hence,
8 . E‘,,ek"z’
8= — (30.13)
ik sin 3 '

In order that the sum of external fields (30.07) and (30.11) would
create the current (30.06), it is still necessary to fulfill the

equality
Cg“ o S"“"‘ iﬁ,E‘g .
. i e 2i ’
2ik sin*d, In U 2k sin? ﬂ,!nm‘; (30.14)
1ka cos 5

which determines the quantity
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in ! )
L
tka cos 7

Ebtmeot 2% -~ . (3(} 15)

ln 1ka sin by

Consequently, for the excitation in an infinite conductor (with
z > zl} of current waves (30.06), it is necessary to apply the external

field
In J 3 ‘
Tkacosf— ol ety «
E,=E, [ 'ﬂz~ar—é%%w~¢al,
» L :
yln {Rasia®, 2k sin*—-
» ’.(z...z,)x{ ?\vith z<L2, :

. 0 with z>>2,. (30.16)

In a completely similar way, one may show that the external

field
i

In —
¢ . Vka sin _2.9 efSe ez
E=E, 5 { —i(z,—~2z)—e s(z__,—-z)} .

o 2 g
28l -5
cos? 5

In tha sin Uy {

):[ 1 with Z>Zz
0 2z 2,
{ 0 with Zz, (30.17)

e{z,—~2
excites the following current in an infinite single-wire line (with
z < 22)
o Sei;:'uz,“,)u ('Z; L 2‘) ()i’e (79—2) . (30 ) lb )

74

Now let us study the diffraction of current waves (30.06) by the

semi-infinite conductor (-e, 22). For this purpose, let us use the

Lorentz lemma [4]

(3 Bt s av =0, (30.19)

Here ffmZMJQpﬂ(RM—Rj is the current of the auxiliary dipole with the
moment Py which 1s located at point 1 with the coordinates (R, §); Hl

3
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1s 1ts field on the conductor surface, where the external currents

J? are specified; E2 1s the fileld created by these currents at point 1

(Figure T7T4).

The external current J? is
determined by the well-known

equation
2
M -2
Jov
jy =— +—[nE] (30.20)
Figure TA4.
in terms of the electric fileld E
on the conductor's surface. In
view of the boundary condition
E,+E:=0 (30.21)
we have
o [ e
frg=—1 £ (30.22)

Furthermore, defining the dipole moment Py in terms of its field

in free space (at the point x =y = z = 0)

E' z-»-k’p .S.‘.T..sina
0z YR (30.23)

and changing from the magnetic intensity Hl¢ to the total current

J=tH,, (30.24)

induced by the dipole in the conductor, we obtain from the Lorentz
lemma the following relationship:

)\ kisind R T
By =y = = g | B @) dz. (30.25)

If the dipole P1 is moved to a distance R >> Zo = Zgo then the
fis21d radiated by it may be investigated on the sectlon 2y = Zg of

Tan



the semi-infinite conductor (-, 22) as a plane wave. Then the
current induced in thils section of the conductor will be determined

by the equation
o), (30.26)

I(z)= s [ — e, (2, —2)e

where

S= fr—, w=—kcosd. (30.27)

i
2k sintfin Teasiad

We wilill select the quantity Zq in such a way that, at a distance

Z, = Z from the conductor end, the reflected current wave would be
practically equal to zecro ($+(2;,—20)=<0) ., Substituting the function
(30.26) intc the right-hand member of Equality (30.25) and taking for
the quantity Ei the external field (30.16), we obtailn

i
2sindin

:E’.’&:Hi’,g X

2i
tkasind
2y

kR oz fezy ik
e E] [ —§, (z,—2) e+ P gz =

R
. 00
IR

_ 1 - eR { 84 [ — ¢, (L) eie L] g

e i
ZSinNnm

X

Iy
A et (CI"*‘W;) 2, a

i Eat N dz’} (30.28)
An important feature of this relationship i1s that the integration
1s performed here not along the cntire conductor (-, 22), but only
along part of it (-=, zl), where the function ¥+(z,—2z) describes the
current with good precision. The integrals here are calculated the
same as 1in Equation (30.09). As a result, the fileld radiated by the
semi-infinite conductor (-, zz) will equal

1 aAR

E?-ﬂzﬂ?*;::: R X

2i

2 3:in 8 lﬁ'm

(Equation continued on next page)
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éo ,ei (@ + 1wz,

[ 5 fwzy y twzyvikl
X }‘51 e —9, (L)e IM ik (cos 0-}-cos {i,)+

) 4
‘ sin? 5 In
S LiRL (w4 w2y) yka sin —5~ ~
+ %?cos 3 —f—oc;s 0e) . (L— 3 i 2 L) §-
¢ cos’%inw‘ (30.29)
tka cos -23-

The terms in the braces having the phase factor eiwz correspond to

the desired secondary wave diverging from the conductor's end z = Zg e
Using Equations (30.13) and (30.15), this wave may be represented in

the form
' é’m(z 5 R ips cosd
EP(z,)=HD(z,)= ; e
& 2 2 2 " »
¥ 2sindln o R (30.30)
tka sin ®
where
87 (2,) = 4iEelTer+ikL ¢
A 2
£ sindg(cos § 4 cos9,)1n kasio g,
5 S ¥,
X gos’ircosf?flp " ¢+(L)—~
. tka cos 5~ .
S N i '
—sin® 3-sin* o ln —2— ¢° (L)
2°0 2 Rt
Teasin 5 (30.31)

In a similar way, let us find the secondary diffraction wave

being propagated from the end z = Zq- In order to do this, it is

necessary to investigate the diffraction of primary wave (30.18) at

the end z = Zq of the semi-infinite conductor (z,<z<o0). In this case,
the principle of duality leads to the following relationship

o R4 (30.32) -

ok,

which, after substituting the function (30.17) and the current

, iwE, , . .
f(z) e 0z o Ie’%w—*’?“(z“ z:) exw:,—i«{z {z z,)}

252 sin® 8 g —p——g—u~
sin lnykasig% (30.33>

fred
o
AN
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In 1t gives wus the field radiated by the semi-~infinite conductor
(27, ©), The wave radiated by the conductor's =2nd is the desired

secondary edge wave and may be represented in the form

2 &3 (2 R
Eg)(zx)mﬁf)(zl)x ( ')Qi ER e ikz, cos &’ (30" 3}4)
: ) e
sindin “kasin®
where
) 4i Eefw“z,»{—'fk L :
8™ (2)=— 57— X

ksin 3, (cos & }- cos 3;) In 1ka sin d,

.28 .4 0 i
X [sin® 2= sin? - In ———— ¢ (L)—
2 2 ka sin - '

) b i o
— cos® - cos* —- In ——————¢° (L) ] .
2 2 1kacas—~—§ ¥ (30.35)

Otherwise, this expression may be written directliy by replacing, in
Equations (30.30) and (30.31), 2z, by z,, & by =—3% and 8, by =—¥8,

§ 31. Multiple Diffraction of Edge Waves

The secondary waves (30.30) and (30.34) which were found are the
waves diverging from the ends of the semi-infinite conductors (-, 22)

and (zl, @), If one excites an infinite single-wire line by the

external field

E:::_-(gf;a(z—-z,), (31.01)

where

g
2iIn 4L _ -
@(2)____ (g(z') (z ) - F tin 14a =0 ikL —ikz, con By
8;=8"(z)|,_= o
. (31.02)

§on PRI i’.““‘“"“‘"‘ ’
st % nykasln&.

L4

then a spherical wave arises which with @=x colncides with wave
(30.30). With the excitation of an infinite line by the concentrated

-

emx
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E'=EP5(z —z,). (31.03)
where

i
2i 1n —— 2 (L) ‘
';ka +( ) ei&l.-—dk:,cos&.

8'=8"(2)|,_=E (31.04)

ksinb,In -?FZ%:?E:
a wave arises which coincides with wave (30.34) when &=0.. It 1s
not difficult to see that these external fields actually excite 1n an
infinite single-wire line current waves which are equivalent to the
secondary current waves in a passive vibrator [that is, equivalent to
those waves which are expressed by the first terms in the brackets of
Equation (28.18)]. Therefore, the tertiary waves may be investigated
as edge waves radiated by the semi-infinite conductors (zl, ) and
(=, Z2) with their excitation by the external fields (31.01) and
(31.03), respectively. From Equations (30.25) and (30.32), we find
without difficulty the total field radiated with the indicated

excitation by the conductor (z;, «)

gﬂ) (AR . iw
Ey=H = g g €T — g (L) (31.05)

2sin8 In Ykasin®

and the total field radiated by the conductor (-«=, z2)

] ) e UL I twzy+RL
ES:H :_:'2 e 7 R [etz‘z,____q,*([,)ez’ l.
‘2slnd1n ‘ ‘

2
tkasin® (31.06)

As a result, we obtain for the tertiary waves diverging from the

ends Zq and Z5 the following expressions:

&) (z,) alkR e«—-ikz,coa& 1.07)
2sindln R . <3 -7

®

3 3
EQz)=H(z)= 5
tka sin d

& (z,) 2R ——iltycon B
E(z) = H (2,) = o e (31.08)

2sindin W

where
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6(’) (21) [ @(22)'(;’“(1;) eikﬁ’ ]

8% @)= — 67, (L (31.09)

In the directions toward the opposite end of the conductor, these
waves are equivalent fo the radiation of an infinite single-wire line

excited by the external filelds

Ei=@3(z—z), 8" =6"@)|,_, (31.10)

Ei=8"0(—2). 8)=§"(z)]

Bo=x

(31.11)

Consequently, the quaternary waves again may be investigated as
edge waves radiated by the semi-infinite conductors (-, 22) and
(Zl’ ®) with their excitation by the external fields (31.10) and
(31.11). Using the reciprocity principle, we easily obtain

E(!) ( z ) . H(‘)(z ) o &) (zy) eikR e——ikz, cos §
p. )= G = % R :
y 23in 8 In m
) n 8 (22) R iricos® ;
ES (Zz):““H; (z:)= a1 5 e " ’ (31.12)
2sin “kaa Sin ®

where

89 (z)=— 85 ¢_(L)e™,
(31.13)

£ ()= — 89, (L) e,

In a completely similar way, the nth order edge waves

* & eikR o

E{;) (2,) = H;n) (z) = (zg)zi - a— ik, cos 0»’
"
uhina ‘n 'xka Siﬂ 8

y
(1) () Sin {(2,) AR as b

Ea (Z,)mH; (2,)= (’2‘_ 7 g TiFhcosE
i3]
‘Slnmnw-;kasinf} 1 (31.14)

are found. Here
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8 (2)=— 8" g_(L)e*, )

; ] 1.1
é)’(n)(z,)m.....8(‘3-——!)“},4“(1’)&:&!. ' (3 5)

and

8= g™ (z,) L=ﬂ’ 8 = gtn (z,)fsm_ (31.16)

Thus, the fileld arising with multiple diffractions (starting with

‘the second) may be represented in the following form:

Y IES 20+ £ (@] =

n=2

‘ I eikR hd —ikz,co8 B
== 21 ! R Z&(n)(zl)e ' +

2s5in¥1n mﬁ n=2

- o 5(0) (2, ‘e~?"k:,cas$ ’
| +");¥2L i g J (31.17)
where
Z@(n)("’x):
ne=2
i (31.18)

(L)
(2) ikL
2 l-p—¢

r

=@M (z,) [P0 (L) ™" —

o
N o
Y A (z,) =

n=2

o 1 oy, ¥4 (L i
— 6 2+ (824 (L) — g7 D e, (31.19)

and the functions &®(z,.) and &) are determined by Equations (30.31),
(30.35), (31.02) and (31.04). We will not write out here the rather
unwieldy final expression for this field, but we will proceed with

a calculation of the total field scattered by a vibrator. -

§ 32. Total Fringing Field

Before beginning the derivation of the expression for the

scattering characteristic, let us make the following observation.

-
e
[
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functions ¢ which enter intc Equation (30.04) satisfy relationships
(30.05), and may be found by factoring. However, our investigation

of the successive waves arising with diffraction at the cqnductor's
ends was approximate. Therefore, 1t makes no sense to use the precise
Expression (30.04) for the primary field. We shall use the approxi-

mation expressions for the function o

O(—kcos?, —kcosdy)=In — g
tka sin - sin «—Q!-

<Dwgmﬂ,kmm&“::M~m~m~qm~wr“
1ka cos “y~ €Os ~é°-

(32.01)

which were obtained by the variational method and have a precision
which is sufficient for our purpose (see [83]). More precisely speak-
ing, we will use approximation Equations (32.01) in conjunction with

the rigorous Expression (30.05), and we will set

i

ln oy, r
1 1ka €0s —5~ €0s 5~
O (—kcos 8, — kcos By ==]n L ’
i gkasind 7 ykasini,
. 4
P
i +ka sin 5 sin -
®(kcos 9, kcos b,) m;n o n T -
tkasind ' ykasind, J (32.02)

Then the primary field will equal

) : 1 dRR
EV=H" = — ‘E',' R
’ 2{cos N 4 cos ) in -
(LOS¥ +k05 ‘)iﬂ '.'A'll sin “‘}ﬂ “;ka sin 8.
V 8, 3 i ik, (cos B-}eos By)
X Ctg?ctg“é“ in ¥ ? e i

tha cos 5~ ©os EL -

»

i k2 {c0S Bdcon BJJ

3 ¥
«wigiftgﬁfln e

K
-

1ka sin 5 sin -5

(32.03)

Now summing Expressions (31.17) and (32.03), we find the total field

scattered by a passive vibrator in the form
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(32.04)

3, %),
where
2i

F(3, 8)= ‘ 2 27— X

(cos - cos 8,)sin 3 sind, In 1kasin § In qra sin 8,

. 9 8 i —i%z, (cos B 8,)
X Jcos® - cos® - In T e —

« tka cos —5—cos —5-

i e«-—ikz, {cos B8-cos 8,) __l__

. 8 . .9
— sin? —- sin® -~ In

8 )
—-cos’~§—cos’—§~ln

1%a cos

)
4 e** [sm —5-sin? <+ a, In — ——

380

8
— cos? -~ cos ~w~ln

1ka cos

(cos 8 + cos 6,) S

tha sin —- sin -§'~

y
4 et [sm sin?

)

i
—

. =L
1ha sin- b

—ik(z,c080,+2, cos by
e & otz
<p+] o

a'
5 in

s,

2

()
—g

7ka sin 5~

m

-—;k (zecos 84z, cos 8y
Pyfe
2 .

iRL—ikzycos By

7ka
_ > 2uL[ +¢e
— e 1 —~ikz, cOS s.] b e e ~ikzcosd
i
{cos ¥ 4 cos ) In ——
Yka o, . —ikzy cos B,
- 20 e‘.zkl, [q,i?e[k’. kz, cos (I
!{+ --Ikz, cos 39] ’ e"“lkzl“” ‘B} . - ( 32 . 05 )
in which all the functilons ¢y, and wg have the argument L. The result-

ing expression, despite its compl
Actually, the first term in the b
wave radiated by the conductor's

sponds to the primary wave radiat
The terms included 1In the first p
dary wave departing from the end

set of brackets refer to the seco
The

Z Zg.

remaining terms deser

exity, has a clear physical meaning.
races corresponds to the primary edge
end z = Zqs the second term corre-

ed by the conductor's end =z Zo e

air of brackets refer to the secon-

Z = 29, and the terms in the second
ndary wave departing from the end
ribe the sum of all subsequent waves

arising with multiple diffraction and have a resonance character,

s
=

The resonance begins with L Z5
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Another important feature of the scattering characteristic 1is
that it satisfles the reciprocity principle — that is, it does not
change its value with a mutual interchange of ¢ and To. One may
also show that the Vibrator'does not radiate in the directions along
its axis, and it does not scatter electromagnetic waves with glancing
irradiation, that is,

F(O, 8)=F (=, %)= 7FD, 0)==F (3, =)==0. (32.06)
Furthermore, using representation (28.25) for the functions V¥

and y,, we obtain the following expression for scattering character-
istic (32.05) in the direction of the mirror-reflected ray (0=a—0) :

kL

F(r—ty, d)=— ——p—+

2la 1%a sin EN

0 8
('3'3)’[3 (E‘IzL sin? *“-2"“) +uhyee (QkL cos? -§'~)
+-kL 57 +
2 2
4 (ln ﬁa sin 8,)
‘ i 2 1
+ (a0, 1 i tkasind, 2 +

sinte In o 1}«1 sin ﬁ,}

tka sin “‘é"

1 [ . _
+ (T ‘1!‘+ cos* “5" —In ”““‘“"‘“T“)'{':‘ei”' (I —cos 8,)+
(

1 ¢ ., 8
- f s .
{“ 5" Y_sin 5 In W&.

'{) QlkL (14<os 8a)__
152 ccs 5 )

In :
Y82 kL .0, i%L (1—cos$ 04,0 -
— e o0 e ) — ¢ 19—

D T+
1n~!--
‘_“_bli_a_e&kl‘[yﬂ ?etkl.( «-cosb,) ('{0{"]?-—} (32'07)

With glancing irradiation of a vibrator, when §,=0 or ¥==, it
follows from this that F(m 0)=F(0, z)=0.,

Now assuming that &=-- in Equation (32.07), we obtain the

relationship kL . E kL)
T B * ! EL +

5] et PR
v ”m’;ka z\lnwa)
i e 1 [ ;/"z\ ety

UL § P

cr 2:\?!1“?§a T zklzga

\ TRay

Equation continued on next page
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(32.08)

which characterizes the reflected field magnitude with normal

irradiation.

Let us also write the expressions for the function F(# 3) which

corresponds-to the radar case when the observation and irradiation
directions coincide (¥=1
F(® 9=
iQ;‘ ; {cosl _% In i a e- 2ikz, cos B
(sin ¥1n m) cos B | 1ka cos® 5
—sin® J; In——— ~ g Hikmcos ®

o b in? o
(ka sin )

2 [sin',‘- In

fremid

i
- ?_(L)—
tha sin —-

[ S

s ; | —ik gz ikl
—cos’ - In ~——— '?+(L)le ik e cos B4RL_
tka cos 5~

D
N ) ; o
+c’ols)‘ lﬂ,‘;:a N’z_([*)e mkz,cosa+

+ ('{i([-) e-—-ﬁx‘kz,cos &] eZIkL} . ‘ ‘ ( 32.09 )

B i p N ik (2, - cos kL
“QEJLIH;{—/:—&(?\L)2P+(L}9_(L)C k(2tey) 3+31 +

We may show that when 3==%} Equation (32.09) leads to Expression

(32.08).

The scattering characteristic (32.05) which was found above was
obtained by summing all the waves formed with multiple diffraction. -
Such a method is very graphic, but somewhat lengthy. One may arrive
at the same result more quickly if it i1s assumed that the edge wave
diffraction process at the passive vibrator's ends takes place, start-

ing with tertiary acticn, the same as at the end of a transmitting



vibrator.
be directly sought in the form

’ 2i
F(3,%) = [ (8,8,)

sin 0 sin 3,1n Yha sin 3 In thasin 8,

where
: f@-ex::_nwwLuw;.X
UYL cos b cos ¥,
X cos® LCOS’ 2' ln i ) e-——a‘k:. {cus B4cos B)
2 .’ - -

- yka cos 5~ €08 5~ |

: NP PP 1 - ‘

—sin? "'2"3'“’ -é‘-ln ' e ikzs(cos 84cos 8.)+

¥y,
tha sin-—f sin —-

-ye“ﬁ[ sin? —-sin w~ln-»--uﬁ~»9_(L)~—

tha sin “"2-'

9 ) i
— cos? —-cos? -»f— ln-———u'—«—T «h(L)

5 ] e-ak (.z, cos Byt 2z,co8 &)+

rkacos-y.
3 . ,8
J et [sm 5 san’.%lnmwg.q,_([‘)___
-{!zaslnﬁr '
8 "’* 8+ 8
--‘COS 5 cos’-——ln 5 1’_,_([.)} ik (24 cos z¢‘:os N 1
rkacoswé—

O L Cp (L,

Therefore, the passive vibrator's scattering diagram may

(32.10)

(32.11)

The last two terms in Equation (32.11) are the sum of all edge
waves starting with the tertiary waves which are propagated from the

conductor's ends z = zq and z = Z5s respectively.
and 02 are determined from the condition

F0,9,)=f (=, 8) =0.

which leads to the system of equations

. T 3 2k L—ikz 05 By
L,?(L)ekzj~{3«“ lﬂyka pL) T, ]
, L 3 A— “:ki‘—-iiz,cms. j
C,+Cypil)e &g? (L) '
from which
201
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(32.13)



1 s R -ikz, 8
me“‘a‘b*i?‘ ‘In W“,’*?‘ w3 —
. *L -—"th;COSG. ] /
I oiee ikL- kz,co88,
Cym gy I [ g LR
. . q't}‘«e»---lkz,.x:os&. 1‘ (32 . ]_l} )

§ 33. A Vibrator Which is Short in Comparison With
the Wavelength (a Passive Dipole)

The theory of plane wave scattering by a thin cylindrical
vibrator whi:h is discussed in this chapter is based on a number of
physical corsiderations. One good aspect .f this theory 1s the fact
that its precision increases with the length of the vibrator, since
the current waves whcse diffraction we are investigating are expressed
more clearly, the longer the vibrator. However, one may also show
that for short vibrators, the length of which is small in comparison
with the wavelength, the equations derived by us have good precision.

It is élear that a vibrator which is short in comparison with
the wavelength acts as a dipoie, creating a fringing field
,. MR
E :=H, = kp «E-é-sm& (33.01)
where the dipole moment p, may be calculated by solving the electro-
static problem. This dipole moment depends on the dimensions and

shape of the vibrator. In accordance with [92], the dipole moment of
a cylinder in a uniform electrostatic field Ez equals

psz(l)(%)"Ezz (33.02)

i

where D(1) 1s a dimensionless function 1 L/2a which is shown in
Figure 75 by the continuous curve. With 7 >> 1, one may calculate the
function D(Z1) by means of the asymptotic expansion

@g;m%(&éﬁgﬁ%u} ﬁsm?(%aél”%- (33.03)

202



If in this expansion one limits oneself to the first term, then

D(l) =y - ,
3(m3uw%;) (33.04)

The results of numerical calculations based on Equations (33.04) are
shown in Figure 75 by the dashed curve: we see that the latter
equation gives a good precision already with 1 2 9.

e

®H

L}
K
w
[
@
-
s [ g ~ 43

Figure 75. Graph of the function D(7) which deter-
mines the cylinder's dipole moment.

Thus, the dipole moment of a vibrator which is short in compari-

son with the wavelength equals

L? sin 8 gl L2
o=E 5 —e (1o (6e) )
p w7 4i4{@“6 ‘]} (33.05)

and its scattering characteristic must have the form
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k¥ s5indsind, f
F(g’ﬁa)m%mi’;’:mgﬂh JICEON (33.06)
In this section we find the first two terms of the expansion of
the vibrator's scattering characteristic F in reciprocal powers of
the large parameter L/a (with A »+ =), and we compare them with
Expression (33.06). We shall 1limit ourselves to the case B:zaaﬁ=%},
when the function F 1s described by the simpler Equation (32.08).

With small values of the argument z, the functions y(z) and
V@)=, '“?uh-- [see Equations (28.21)] may be represented in the

form

. 1. 28@—g© (A
b(z) =1 — =S +0(g,(0,),1

T(2)—1—8()—g(0) Ly
#(2) T 22O +0(g=(0))‘ " (33.07)

The functions g and g included here are determined by the equations:

-

2k
e@—gO=InTE 4 £, g =15 (33.08)

8

Ld

and

g(—g0)=mT=

k a—ikz
T *j-f‘ ds, g<°>‘"’ﬂ,ka- (33.09)

Let us note that fxpressions (33.07) completely agree with the
correspondiné terms of the aysmptotic expanqion for the functions V¥
and w, which may be cbtained from the initial integral equations which
determine these functions (see, for example, [81], § 4).

Limiting ourselves in the expansion for the functions y(z) and

#(z) to terms of the order of (kz)3, we have
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p(=1——1 ‘}kz( 3ﬁ5*~1)~k
1&;};{‘ -
) G 2rke 3 2 [ 2tkz 11N
4 k:zz\ i 2} { k-’!z’\l wm‘““j] (33.10)
and
U(2)=1— [zkzkln ftkz 1)—}-
2!n~‘§; -
ktzl (l 1_’55,....,,... B 'E:f—:(l Ykzwl}')l (33.11)
6 - )

In addition, terms of the ordar(“‘wa)q. are omitted in Expressions
(33.10) and (33.11). Now if we substitute these expressions into
Equation (32.08), then one should omit terms of the order (hla%)—gin
it. Therefore, the function F({},{;) may be represented in the form

F(-—E‘— %}m d 'kL{ln——?—i-—mE(kL)]—}-

9 ‘lf) Yka
(‘"v )

g A 1 — V2 i it
ln—-—___ 3 1 x4 V2 i
+lagz 2V+2"e %L +

2In e

i ¥ ot ] : ‘
e P et (33.12)

Furthermore, taking into account Equations (33.10) and (33.11),

we find
kL
‘ [1 i E(kL)]
EL kL RALEN T
.«_‘_——-(1 i;—-ﬁ«—inT kL+ ) ; (33.13)
In 1ka 3 + 7 =
ikl k22 1R
yka+‘2 —3 -—l-l-§-. 7 (33'14)

oo VI L, kL RL —
2 ()" m?(I»{—sz—— - —f )m,‘“

. ’:k &L [
w.zzez,(m : 1>+k=u( n L -+
S BL 1Y
b ().

(33.15)

8%
[
W
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and finally

2lnm‘

e P et =

ﬁ(H— i-gak!,u— e*vma% w.*)xn,t,‘-;‘;--—

.4 $7s et ,,/14 5in2 ,
4«1 kL.hl kL -F . (33.1¢ (33.16)

Using these relationships, it is not difficult to show that

Jon——

a

:: - e - ——7--11:2 _— ‘ ‘
Pk ‘i’)zkzﬁ { nlL +(1___)'+0K ) ][ (33.17)

The equation which has been found may be rewritten in the form

(33.18)

It completely agrees with'Equation (33.06) which follows from [92].

This result confilrms the correctness of scattering characteristic
(32.05) calculated by us, and shows that it is applicable for vibrators

of any length.

§ 34, The Results of Numerical Calculations

The function F(®, %) enables one to calculate the integral scatter-
ing thickness S and the effective scattering area o of a passive
vibrator. The integral scattering thickness is determined by the

relationship
where
< 53
gzt (34.02)
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1s the energy flux density in the incident wave averaged over an

osclillation period, and

P=Z5Re Sn[ﬁﬁ*}dsﬁ..:} Esin 9, Rej J(2) ez gy (34.03)

. z

is the value of the energy scattered by the vibrator into the surround-

ing space averaged over a period. Since one may represent the fring-
ing field in the far zone in the direction @&=n—%8 by the equations

. ____ ik . efR “ ikz ¢
EQ‘«—-H’——'“‘ “'E“'s‘nao *E-'--j ./(z)e’“ °”'dz (34,014)
z

and

kR .
Ey=H,=—ES—-F(x—3¥,39,), (34.05)

then, having determined from this the integral

2z, .
yj(z)eikZCOSSCdz .“:::},;—:“—:‘-lgn—s;- F(t"“'ag, 3°) (3“;06)
2y R

we obtain

Sz—?:;cos’ z2-lin F(zwﬂé'; 3,). (34.07)
Calculations of the quantity S/L2 (with 2=0, %=={}), performed by us
for vibrators with the parameter Z==§nﬁ§ taking the values x = -0.05
and X = -0.1, are found to be in agreement with the results of
Leontovich and Levin [85]. With y = -0.1, our curve (the dotted line
in Figure 76) is only slightly displaced in the direction of longer
wavelengths and gives slightly higher resonance peaks.

The effective scattering area ¢ according to the definition

equals

3(9, 8= 2 (34.08)

#

where p 1is the known gquantity (34.02) and

[ oy oy



L1 ; 22 -

e
!

P ]

R

12

a

m’!‘

ﬂé T I} 7] 7] F7] 0
i

Figure 76. The integral scattering thick-
ness of a vibrator as a function of its
length (with normal incidence of a plane
wave). Curves 1 were calculated by Leontovich
aind Levin [85]. Curves 2 were calculated
on the basis of Equation (34.07).

€ g € IFO.)
P, = g By = o T B (34.09)

represents the average value of the energy flux density scattered by
the vibrator in the direction # . Consequently -

3%, 8) = 2= costa- | F (3, B [". (34.10)
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If the receiving antenna operates with the same polarization as
the transmitting antenna, then the corresponding value of the effec~-

Sive area will equal

3, (3, 8) = cos'a- | F(9, B,)|* (34.11)

In the case of radar when the transmitting and receiving antennas are
combined and the polarization is arbitrary, the vibrator's scattering

properties are characterized by the average value

-

: 2
O=g o0 00=T1r0. 00 (34.12)

In Figures 77 and 78, the results of calculations performed on
the basis of Equations (34.12) and (32.08) for the case of normal
irradiation (8==%}> are represented by the dotted lines. Figure 77
illustrates the dependence of the function ¢ on the quantity kL with
a glven value of Q},:—-?ln?f:‘——»—:’l& — that 1s, when the ratio of the
vibrator's length to its diameter equals i/2a = 452. 1In Figure 78
the graph of the function ¢ is constructed as a function c¢f the fre-
quency f = c/J’\-:LO"6 (in megahertz) for the prescribed parameters
L = 5 cm and Qp = 15. Here the curves plotted by Lindroth [79] are
drawn with a continuous line, and the curve in Figure 77 calculated

by Van Vleck et al. [86] is traced by the dash-dot-curve.

The curves of Lindroth and Van Vleck were calculated by inte-
grating the current which is found as a result of the approximate
solution of the integral equation. However, this procedure was per-
formed in [79] and [86] in a different way. Lindroth obtained an
expression for the fringing field in the form of an expansion in
recliprocal powers of the parameter Qp, The expression includes terms
of the order of QP‘B. In [86] a different kind of approximation was
used which led, as can be seen from PFigure 77, to rather rough results
especlally in the resonance region. Our curve (the dotted area)
agrees almost everywhere within the limits of graphical preclsion with
the curve of Lindroth. A noticeable divergence 1s observed only in

the magnitude of the first resonance peak.
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Figure 77. The effective scatter-

ing area of a vibrator as a
function of its length with
normal incidence of a plane wave.
Curve 1 was calculated by
Lindroth [79]; curve 2 was
calculated by Van Vleck [86] by
means of the method of integral
equations; curve 3 was calcu-
lated on the basis of Equation
(34.12).
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Figure 78. The effective scatter-

ing area of a vibrator as a
function of the frequency

f = c/,‘x-IO"6 (in megahertz) with
normal incidence of a plane wave.
The designations are the same

as those in Figure 77.

In Figure 79 and 80 radar
diagrams are constructed for vi-
brators of a length L = 0.5 and
L = 2x with the specified value
L/a = 900.
lated by Tai using the variational
method [87].
tained by the method of induced
emf [86]; curves U4 were obtained
by the above-indicated method of
Van Vleck. The results of calcu-—
lations based on our Equations
(34.12), (32.08) and (32.09) are
shown by curves 2.

Curves 1 were calcu-

Curves 3 were oOb-
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Figure 79. A comparison of the dliagrams
for the effective scattering area of a
half-wave vibrator calculated by various
methods.

Curve 1 was calculated by Tai [87] by the
variational method;

Curve 2 was calculated on the basis of
Equation (34.12);

Curve 3 was calculated by the method of
induced emf (in the work of Van Vleck
[861);

Curve U4 was calculated by Van Vleck [86]
by the method of integral equations.

In the cited references, the fringing fileld was calculated by
the direct integration of the current. In order to determine the
current, various approximation methods were used. In the variationgl
method [87] a functional was constructed for this purpose which was
stationary in respect to small current variations. Then the current
was sought in the form of some function containing undetermined con-
stants. These constants were found from the condition of the func-
tional's stationarity. This method enables one to rather easily
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Figure 80. Diagrams for the effective
scattering area of a vibrator calculated
by various methods. The designations
are the same as those in Figure 79:

L = 2A

obtain the first approximation; however, its results, especially for
long conductors, may depend in a substantial way on the form of the
trial function. 1In the induced emf method [86], the current is -
sought in the form of a combination of trigonometric functions with
unknown coefficients. These coefficients are determined by using the
law of conservation of energy. This is the simplest method, but it

has a number of serious defects. Thus, as a consequence of incorrectly
accounting for the current component having the incident field phase,
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it leads to 1naccurate results 1n the case of odd resonances (espe=-
cially for long conductors), and it does not give the displacement of
the resonance peaks from the values X = 2L/n (n = 1, 3, 5....) in the
direction of longer wavelengths.

The results obtained by us are also approximate. However, our
Equation (32.05) satisfies the reciprocity principle, and is applicable
for any length vibrator. For very short vibrators L << A, it changes
into the asymptotic expression for the scattering characteristic of
a dipole (see § 33). For vibrators with a length of several wavelengths
(Lynx, n=1, 2, 3, 4), Equation (32.05) gives satisfactory results.
Calculations performed on its basls for radar reflection with normal
irradiation agree wlth the results of Lindroth. Good agreement 1is
also observed with the results of Leontovich and Levin for the inte-
gral scattering characteristic. With an increase of the vibrator's
length, the precision of this equation increases, and in this way 1t
is favorab1y4distinguished from the equations proposed for the

scattering characteristics by cther authors.

Moreover,:the divergence between the various approximation
methods indicates the necessity of performing rather detailed calcu-
lations based on precise methods, for the purpose of evaluating the
actual error of the approximation methods. Such calculations may be
performed, for example, by means of the method discussed in

Refererces [88, 89] or [91].



FOOTNOTE

Let us note that one may refine
Equation (28.04) by multiplying its
righthand member by the factor OO

(usually eo N~ 1) calculated in
Reference [84].

Footnote (1) on page 177.



CONCLUSION

In this bock, the solution of a number of diffractlion problems
was obtained based on the approximate consideration of the field per-
turbation in the vicinity of a sharp bend of the surface or a sharp
edge. Equatidns were derived for the scattering characteristics, or
in certain cases (Chapter IV), for the radar reflection thicknesses
with a specified irradiation direction. The expressions which have
been found have a clear physlcal meaning. They satisfy the reciprocity
principle, and they are convenient for making calculations.

The results obtained enable us to form a more complete concept
of the applicability limits of the physical optics approach. It is
usually customary to assume that this approach gives .celiable results
only if the body's dimensions are large in comparison vith the wave-
length. Such an opinion 1s based on the following argument. The
physical optics approach considers only the radiation from the
uniform part of the current, and does not include in the calculations
the nonuniform part of the current which is concentrated in the
vicinity of the bends and the sharp edges. Therefore, when the body's
dimensions are considerably larger than the wavelength, the nonuniform
part of the current occupies a relatively small part of the body's
surface. Therefore, one would think that its influence would be

small.

But 1n actuality it turns out that the reliability of physical
optics results depends substantially, not only on the body's dimen-
slons, but also on the body's shape and the irradiation and observation
directions. For example, with the glancing incidence of a wave on
the flat face of a body, the edge zone occuplied by the nonuniform
part of the current 1is considerably broadened and the effect of this
current becomes substantial. Therefore, physical optics gives quali-
tatively lncorrect results for the field scattered by flat plates
with glancing irradiation 1Independent of the ratio between their
dimensions and the wavelength. The effect of the nonuniform part of
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the current becomes noticeable also in those directions where, accord-
ing to physical ontics, the fringing field must be equal to zero or

have a small value.

The problem of diffraction of a plane wave with its incidence on
a cone along its axis (§ 17) serves as a clear example of how impor-
tant the above-indicated factors are. Although in this case the non-
uniform part of the current, concentrated near the cone's vertex, has
practically no influence on the scattering, nevertheless, the physical
optical approach gives values for the radar thickness which are tens
of decibels smaller than the experimental values, even with large
dimensions of the cone. The deciding factor here is the nonuniform
part of the current flowing in the vicinity of the sharp circular base
rim of the conical surface; the nonuniform part of the current has an

especlally large value for sharply pointed cones.

Another interesting example of a similar nature 1is the scattering
of a plane wave by a finite paraboloid of rotation (§ 18) where the
physical opfics appreoach leads to qualitatively incorrect results.

The effective scattering area calculated in this approach turns out
to be a periodic function of the paraboloid length, and with certain

lengths 1t becomes zero which most certainly does not correspond to

reality.

The investigation of the difrraction of edge waves shows
(Chapter V) that for flat plates one may limit oneself tc considera-
tion of secondary diffracztion, i1f their linear dimensions are one-
and-a-half to two times larger than the wavelength.

Let us note that we attempted to obtain equations for the
scattering characteristics which would possess physical visualiza-
billty and which would be convenient for making calculations. In
keeping with this, we were obliged to introduce various kinds of
interpolation equations and simplified equations which satisfy the
formulated requirements, but in return are not in the general case
the dominant terms of the rigorous asymptotic expansion in powers of

the small parameter X/a.
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Our purpose was not to calculate the current on the body's sur-
face, the field in the near zone, or the integral scattering thickness.
These questions are investigated in a number of other works based on
the physical theory of diffraction which were already enumerated in
§ 25. In them, in particular, the first terms of asymptotic expan-
slons in powers of A/a were obtained for the integral thickness which
characterizes the total power scattered by a body. However, in these
works, as a rule, equations are missing for the scattering character-
istics which are valid with any direction of irradiation and observa-
tion. Therefore, the results of this book and the 1ndicated works

mutually supplement one another.

At present, only a limited number of diffraction problems have
yielded to theoretical studies, as a result of which experimental
studies of diffraction by various bcecdles have taken on great 1lmportance.
In Chapter VI an experimental method was discussed which enabled one
to isolate in a "pure form", and to measure, the field from the non-
uniform part of the current excited by a plane wave on a metal body
of any shape. In the same chapter, 1t was shown that the well-known
phenomenon of depolarization of the wave reflected from a body which
is found 1in free space is produced by the nonuniform part of the
current, or, in other worcs, by the surface distortion.

The investigation carried out in Chapter VII for the problem of
diffraction by a thin, finite length cylindrical conductor represents
a natural development and completion of the method of considering the
multiple diffraction of edge waves which was applied in Chapter V.

In Chapter VII equations were derived for the scattering diagram which
are suitable for vibrators of an arbitrary length with any irradiation

and observation directions. ~

The results obtained in this book show the fruitfulness of
physical diffraction theory, and enable one to arrive at the solution
of other more complicated problems. Such problems may be divided
into two classes. Problems which may now already be solved on the
basls of the known results of diffraction theory are related to the
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first class. As an example of such a problem, one may point to the
problem of diffraction of a plane wave by a frustum of a cone ocr by

an Infinitely long cylinder with a polygonal transverse cross section.
Those problems whose solution requires obtaining (using the methods

of mathematical diffraction theory) a whole series of new results

must be referred to the second class. In particvlar, in order to give
a complete sclution to the diffraction problem of a finite cone, it

is necessary to have more precise knowledge on the diffraction laws

of a semi-infinite cone.

Summing up, one may say that physical diffraction theory ailds
one in analyzing and sorting out the diffraction pnenomena for complex
bodies, poses problems for treatment by mathematical diffraction
theory, and enables one to effectively apply the rigorous results of
mathematical diffraction theory for the solution of new problems.

In conclusion, I express my deep thanks to L. A. Vaynshteyn for
his valuable advice and regular discussion of the questions to which
this book is devoted, énd also for his attentive reading of the
manuscript and for a number of useful remarks. I also take this
opportunity to express sincere thanks to M. L. Levin for his interest
in this work and his helpful remarks.
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